Fix semantics of [*i..j] and [:*i..j]
* doc/tl/tl.tex: After a discussion with Antoin, it appears that the semantics previously given for f[*0..j] was not considering that f[*0] should accept any sequence of one letter.
This commit is contained in:
parent
5dbf601afb
commit
4629d074ab
1 changed files with 9 additions and 15 deletions
|
|
@ -668,20 +668,17 @@ $a$ is an atomic proposition.
|
||||||
\sigma\VDash f\FUSION g&\iff \exists k\in\N,\,(\sigma^{0..k} \VDash f)\land(\sigma^{k..} \VDash g)\\
|
\sigma\VDash f\FUSION g&\iff \exists k\in\N,\,(\sigma^{0..k} \VDash f)\land(\sigma^{k..} \VDash g)\\
|
||||||
\sigma\VDash f\STAR{\mvar{i}..\mvar{j}}& \iff
|
\sigma\VDash f\STAR{\mvar{i}..\mvar{j}}& \iff
|
||||||
\begin{cases}
|
\begin{cases}
|
||||||
\text{either} & \mvar{i}=0 \land \sigma=\varepsilon \\
|
\text{either} & \mvar{i}=0 \land\mvar{j}=0\land \sigma=\varepsilon \\
|
||||||
\text{or} & \mvar{i}=0 \land \mvar{j}>0 \land (\exists k\in\N,\,
|
\text{or} & \mvar{i}=0 \land \mvar{j}>0 \land \bigl((\sigma = \varepsilon) \lor (\sigma
|
||||||
(\sigma^{0..k-1}\VDash f) \land (\sigma^{k..}
|
\VDash f\STAR{\mvar{1}..\mvar{j}})\bigr)\\
|
||||||
\VDash f\STAR{\mvar{0}..\mvar{j-1}}))\\
|
|
||||||
\text{or} & \mvar{i}>0 \land \mvar{j}>0 \land (\exists k\in\N,\,
|
\text{or} & \mvar{i}>0 \land \mvar{j}>0 \land (\exists k\in\N,\,
|
||||||
(\sigma^{0..k-1}\VDash f) \land (\sigma^{k..}
|
(\sigma^{0..k-1}\VDash f) \land (\sigma^{k..}
|
||||||
\VDash f\STAR{\mvar{i-1}..\mvar{j-1}}))\\
|
\VDash f\STAR{\mvar{i-1}..\mvar{j-1}}))\\
|
||||||
\end{cases}\\
|
\end{cases}\\
|
||||||
\sigma\VDash f\STAR{\mvar{i}..} & \iff
|
\sigma\VDash f\STAR{\mvar{i}..} & \iff
|
||||||
\begin{cases}
|
\begin{cases}
|
||||||
\text{either} & \mvar{i}=0 \land \sigma=\varepsilon \\
|
\text{either} & \mvar{i}=0 \land \bigl((\sigma=\varepsilon)\lor(\sigma
|
||||||
\text{or} & \mvar{i}=0 \land (\exists k\in\N,\,
|
\VDash f\STAR{\mvar{1}..})\bigr)\\
|
||||||
(\sigma^{0..k-1}\VDash f) \land (\sigma^{k..}
|
|
||||||
\VDash f\STAR{\mvar{0}..}))\\
|
|
||||||
\text{or} & \mvar{i}>0 \land (\exists k\in\N,\,
|
\text{or} & \mvar{i}>0 \land (\exists k\in\N,\,
|
||||||
(\sigma^{0..k-1}\VDash f) \land (\sigma^{k..}
|
(\sigma^{0..k-1}\VDash f) \land (\sigma^{k..}
|
||||||
\VDash f\STAR{\mvar{i-1}..}))\\
|
\VDash f\STAR{\mvar{i-1}..}))\\
|
||||||
|
|
@ -689,19 +686,16 @@ $a$ is an atomic proposition.
|
||||||
\sigma\VDash f\FSTAR{\mvar{i}..\mvar{j}}& \iff
|
\sigma\VDash f\FSTAR{\mvar{i}..\mvar{j}}& \iff
|
||||||
\begin{cases}
|
\begin{cases}
|
||||||
\text{either} & \mvar{i}=0 \land \mvar{j}=0 \land \sigma\VDash\1 \\
|
\text{either} & \mvar{i}=0 \land \mvar{j}=0 \land \sigma\VDash\1 \\
|
||||||
\text{or} & \mvar{i}=0 \land \mvar{j}>0 \land (\exists k\in\N,\,
|
\text{or} & \mvar{i}=0 \land \mvar{j}>0 \land \bigl((\sigma\VDash\1)\lor(\sigma
|
||||||
(\sigma^{0..k}\VDash f) \land (\sigma^{k..}
|
\VDash f\FSTAR{\mvar{1}..\mvar{j}})\bigr)\\
|
||||||
\VDash f\FSTAR{\mvar{0}..\mvar{j-1}}))\\
|
|
||||||
\text{or} & \mvar{i}>0 \land \mvar{j}>0 \land (\exists k\in\N,\,
|
\text{or} & \mvar{i}>0 \land \mvar{j}>0 \land (\exists k\in\N,\,
|
||||||
(\sigma^{0..k}\VDash f) \land (\sigma^{k..}
|
(\sigma^{0..k}\VDash f) \land (\sigma^{k..}
|
||||||
\VDash f\FSTAR{\mvar{i-1}..\mvar{j-1}}))\\
|
\VDash f\FSTAR{\mvar{i-1}..\mvar{j-1}}))\\
|
||||||
\end{cases}\\
|
\end{cases}\\
|
||||||
\sigma\VDash f\FSTAR{\mvar{i}..} & \iff
|
\sigma\VDash f\FSTAR{\mvar{i}..} & \iff
|
||||||
\begin{cases}
|
\begin{cases}
|
||||||
\text{either} & \mvar{i}=0 \land \sigma\VDash\1 \\
|
\text{either} & \mvar{i}=0 \land \bigl((\sigma\VDash\1)
|
||||||
\text{or} & \mvar{i}=0 \land (\exists k\in\N,\,
|
\lor(\sigma \VDash f\FSTAR{\mvar{1}..})\bigr)\\
|
||||||
(\sigma^{0..k}\VDash f) \land (\sigma^{k..}
|
|
||||||
\VDash f\FSTAR{\mvar{0}..}))\\
|
|
||||||
\text{or} & \mvar{i}>0 \land (\exists k\in\N,\,
|
\text{or} & \mvar{i}>0 \land (\exists k\in\N,\,
|
||||||
(\sigma^{0..k}\VDash f) \land (\sigma^{k..}
|
(\sigma^{0..k}\VDash f) \land (\sigma^{k..}
|
||||||
\VDash f\FSTAR{\mvar{i-1}..}))\\
|
\VDash f\FSTAR{\mvar{i-1}..}))\\
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue