Add Testing Automata Product & Emptiness Check

* src/taalgos/stats.hh, src/taalgos/stats.cc: Compute statistics for a
automaton.
* src/ta/ta.hh, src/ta/ta.cc: Abstract representation of a Testing
Automata(TA)
* src/ta/taexplicit.hh, src/ta/taexplicit.cc: Explicit representation of
a Testing Automata (TA)
* src/taalgos/dotty.cc: Print a TA in dot format.
* src/taalgos/reachiter.hh, src/taalgos/reachiter.cc: Iterate over all
reachable states of a TA
* src/taalgos/sba2ta.cc: implements the construction of a TA from a BA
(Buchi Automata)
* src/tgbatest/ltl2tgba.cc: add commands to test the TA implementation
* src/taalgos/emptinessta.hh, src/taalgos/emptinessta.cc: implementation
 of the TA emptiness-check algorithm
* src/ta/taproduct.hh, src/ta/taproduct.cc: representation of the
product (automaton) between a TA and a Kripke structure.
* src/ta/Makefile.am, src/taalgos/Makefile.am: add them
This commit is contained in:
Ala Eddine 2011-02-11 11:40:21 +01:00 committed by Alexandre Duret-Lutz
parent ba47b821c6
commit 81e80e6069
17 changed files with 1779 additions and 209 deletions

View file

@ -25,8 +25,11 @@ tadir = $(pkgincludedir)/ta
ta_HEADERS = \ ta_HEADERS = \
ta.hh \ ta.hh \
taproduct.hh \
taexplicit.hh taexplicit.hh
noinst_LTLIBRARIES = libta.la noinst_LTLIBRARIES = libta.la
libta_la_SOURCES = \ libta_la_SOURCES = \
ta.cc \
taproduct.cc \
taexplicit.cc taexplicit.cc

82
src/ta/ta.cc Normal file
View file

@ -0,0 +1,82 @@
// Copyright (C) 2010 Laboratoire de Recherche et Developpement
// de l Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "ta.hh"
namespace spot
{
scc_stack_ta::connected_component::connected_component(int i)
{
index = i;
is_accepting = false;
}
scc_stack_ta::connected_component&
scc_stack_ta::top()
{
return s.front();
}
const scc_stack_ta::connected_component&
scc_stack_ta::top() const
{
return s.front();
}
void
scc_stack_ta::pop()
{
// assert(rem().empty());
s.pop_front();
}
void
scc_stack_ta::push(int index)
{
s.push_front(connected_component(index));
}
std::list<state*>&
scc_stack_ta::rem()
{
return top().rem;
}
size_t
scc_stack_ta::size() const
{
return s.size();
}
bool
scc_stack_ta::empty() const
{
return s.empty();
}
}

View file

@ -46,12 +46,15 @@ namespace spot
typedef std::set<state*, state_ptr_less_than> states_set_t; typedef std::set<state*, state_ptr_less_than> states_set_t;
virtual const states_set_t* virtual const states_set_t
get_initial_states_set() const = 0; get_initial_states_set() const = 0;
virtual ta_succ_iterator* virtual ta_succ_iterator*
succ_iter(const spot::state* s) const = 0; succ_iter(const spot::state* s) const = 0;
virtual ta_succ_iterator*
succ_iter(const spot::state* s, bdd condition) const = 0;
virtual bdd_dict* virtual bdd_dict*
get_dict() const = 0; get_dict() const = 0;
@ -70,6 +73,9 @@ namespace spot
virtual bdd virtual bdd
get_state_condition(const spot::state* s) const = 0; get_state_condition(const spot::state* s) const = 0;
virtual void
free_state(const spot::state* s) const = 0;
}; };
/// Successor iterators used by spot::ta. /// Successor iterators used by spot::ta.
@ -93,6 +99,8 @@ namespace spot
virtual bdd virtual bdd
current_condition() const = 0; current_condition() const = 0;
virtual bool
is_stuttering_transition() const = 0;
bdd bdd
current_acceptance_conditions() const current_acceptance_conditions() const
@ -103,7 +111,7 @@ namespace spot
}; };
// A stack of Strongly-Connected Components // A stack of Strongly-Connected Components
class sscc_stack class scc_stack_ta
{ {
public: public:
struct connected_component struct connected_component
@ -116,8 +124,6 @@ namespace spot
bool is_accepting; bool is_accepting;
bool is_initial;
std::list<state*> rem; std::list<state*> rem;
}; };

View file

@ -28,21 +28,30 @@
#include "tgba/bddprint.hh" #include "tgba/bddprint.hh"
namespace spot namespace spot
{ {
//////////////////////////////////////// ////////////////////////////////////////
// ta_explicit_succ_iterator // ta_explicit_succ_iterator
ta_explicit_succ_iterator::ta_explicit_succ_iterator(const state_ta_explicit* s) ta_explicit_succ_iterator::ta_explicit_succ_iterator(
const state_ta_explicit* s) :
source_(s)
{ {
transitions_ = s->get_transitions(); transitions_ = s->get_transitions();
} }
ta_explicit_succ_iterator::ta_explicit_succ_iterator(
const state_ta_explicit* s, bdd condition) :
source_(s)
{
transitions_ = s->get_transitions(condition);
}
void void
ta_explicit_succ_iterator::first() ta_explicit_succ_iterator::first()
{ {
if (transitions_ != 0)
i_ = transitions_->begin(); i_ = transitions_->begin();
} }
@ -55,7 +64,7 @@ namespace spot
bool bool
ta_explicit_succ_iterator::done() const ta_explicit_succ_iterator::done() const
{ {
return i_ == transitions_->end(); return transitions_ == 0 || i_ == transitions_->end();
} }
state* state*
@ -73,8 +82,11 @@ namespace spot
return (*i_)->condition; return (*i_)->condition;
} }
bool
ta_explicit_succ_iterator::is_stuttering_transition() const
{
return source_->get_tgba_condition() == ((*i_)->dest)->get_tgba_condition();
}
//////////////////////////////////////// ////////////////////////////////////////
// state_ta_explicit // state_ta_explicit
@ -85,16 +97,44 @@ namespace spot
return transitions_; return transitions_;
} }
// return transitions filtred by condition
state_ta_explicit::transitions*
state_ta_explicit::get_transitions(bdd condition) const
{
void Sgi::hash_map<int, transitions*, Sgi::hash<int> >::const_iterator i =
state_ta_explicit::add_transition(state_ta_explicit::transition* t){ transitions_by_condition.find(condition.id());
if(transitions_ == 0)
transitions_= new transitions;
transitions_->push_back(t); if (i == transitions_by_condition.end())
{
return 0;
}
else
{
return i->second;
}
} }
void
state_ta_explicit::add_transition(state_ta_explicit::transition* t)
{
if (transitions_ == 0)
transitions_ = new transitions;
transitions_->push_back(t);
transitions* transitions_condition = get_transitions(t->condition);
if (transitions_condition == 0)
{
transitions_condition = new transitions;
transitions_by_condition[(t->condition).id()] = transitions_condition;
}
transitions_condition->push_back(t);
}
const state* const state*
state_ta_explicit::get_tgba_state() const state_ta_explicit::get_tgba_state() const
@ -133,7 +173,8 @@ namespace spot
} }
void void
state_ta_explicit::set_livelock_accepting_state(bool is_livelock_accepting_state) state_ta_explicit::set_livelock_accepting_state(
bool is_livelock_accepting_state)
{ {
is_livelock_accepting_state_ = is_livelock_accepting_state; is_livelock_accepting_state_ = is_livelock_accepting_state;
} }
@ -170,54 +211,71 @@ namespace spot
return new state_ta_explicit(*this); return new state_ta_explicit(*this);
} }
sscc_stack::connected_component::connected_component(int i) void
state_ta_explicit::delete_stuttering_and_hole_successors()
{ {
index = i; state_ta_explicit::transitions* trans = get_transitions();
is_accepting = false; state_ta_explicit::transitions::iterator it_trans;
is_initial = false;
if (trans != 0)
for (it_trans = trans->begin(); it_trans != trans->end();)
{
state_ta_explicit* dest = (*it_trans)->dest;
bool is_stuttering_transition = (get_tgba_condition()
== (dest)->get_tgba_condition());
bool dest_is_livelock_accepting = dest->is_livelock_accepting_state();
//Before deleting stuttering transitions, propaged back livelock and initial state's properties
if (is_stuttering_transition)
{
if (dest_is_livelock_accepting)
set_livelock_accepting_state(true);
if (dest->is_initial_state())
set_initial_state(true);
} }
sscc_stack::connected_component& //remove hole successors states
sscc_stack::top() state_ta_explicit::transitions* dest_trans =
(dest)->get_transitions();
bool dest_trans_empty = dest_trans == 0 || dest_trans->empty();
if (is_stuttering_transition || (dest_trans_empty
&& (!dest_is_livelock_accepting)))
{ {
return s.front(); get_transitions((*it_trans)->condition)->remove(*it_trans);
delete (*it_trans);
it_trans = trans->erase(it_trans);
}
else
{
it_trans++;
}
} }
const sscc_stack::connected_component&
sscc_stack::top() const
{
return s.front();
} }
void void
sscc_stack::pop() state_ta_explicit::free_transitions()
{ {
// assert(rem().empty()); state_ta_explicit::transitions* trans = get_transitions();
s.pop_front(); state_ta_explicit::transitions::iterator it_trans;
// We don't destroy the transitions in the state's destructor because
// they are not cloned.
if (trans != 0)
for (it_trans = trans->begin(); it_trans != trans->end(); it_trans++)
{
delete *it_trans;
}
delete trans;
delete get_tgba_state();
Sgi::hash_map<int, transitions*, Sgi::hash<int> >::iterator i =
transitions_by_condition.begin();
while (i != transitions_by_condition.end())
{
delete i->second;
++i;
} }
void
sscc_stack::push(int index)
{
s.push_front(connected_component(index));
}
std::list<state*>&
sscc_stack::rem()
{
return top().rem;
}
size_t
sscc_stack::size() const
{
return s.size();
}
bool
sscc_stack::empty() const
{
return s.empty();
} }
//////////////////////////////////////// ////////////////////////////////////////
@ -227,6 +285,7 @@ namespace spot
ta_explicit::ta_explicit(const tgba* tgba_) : ta_explicit::ta_explicit(const tgba* tgba_) :
tgba_(tgba_) tgba_(tgba_)
{ {
get_dict()->register_all_variables_of(&tgba_, this);
} }
ta_explicit::~ta_explicit() ta_explicit::~ta_explicit()
@ -234,20 +293,13 @@ namespace spot
ta::states_set_t::iterator it; ta::states_set_t::iterator it;
for (it = states_set_.begin(); it != states_set_.end(); it++) for (it = states_set_.begin(); it != states_set_.end(); it++)
{ {
const state_ta_explicit* s = dynamic_cast<const state_ta_explicit*> (*it); state_ta_explicit* s = dynamic_cast<state_ta_explicit*> (*it);
state_ta_explicit::transitions* trans = s->get_transitions();
state_ta_explicit::transitions::iterator it_trans; s->free_transitions();
// We don't destroy the transitions in the state's destructor because
// they are not cloned.
for (it_trans = trans->begin(); it_trans != trans->end(); it_trans++)
{
delete *it_trans;
}
delete trans;
delete s->get_tgba_state();
delete s; delete s;
} }
get_dict()->unregister_all_my_variables(this);
delete tgba_;
} }
state_ta_explicit* state_ta_explicit*
@ -256,24 +308,33 @@ namespace spot
std::pair<ta::states_set_t::iterator, bool> add_state_to_ta = std::pair<ta::states_set_t::iterator, bool> add_state_to_ta =
states_set_.insert(s); states_set_.insert(s);
if (is_initial_state(*add_state_to_ta.first))
initial_states_set_.insert(*add_state_to_ta.first);
return dynamic_cast<state_ta_explicit*> (*add_state_to_ta.first); return dynamic_cast<state_ta_explicit*> (*add_state_to_ta.first);
} }
state_ta_explicit* void
ta_explicit::add_initial_state(state_ta_explicit* s) ta_explicit::add_to_initial_states_set(state* state)
{ {
state_ta_explicit * s = dynamic_cast<state_ta_explicit*> (state);
s->set_initial_state(true); s->set_initial_state(true);
return add_state(s); initial_states_set_.insert(s);
} }
void void
ta_explicit::create_transition(state_ta_explicit* source, bdd condition, state_ta_explicit* dest) ta_explicit::delete_stuttering_and_hole_successors(spot::state* s)
{
state_ta_explicit * state = dynamic_cast<state_ta_explicit*> (s);
state->delete_stuttering_and_hole_successors();
if (state->is_initial_state()) add_to_initial_states_set(state);
}
void
ta_explicit::create_transition(state_ta_explicit* source, bdd condition,
state_ta_explicit* dest)
{ {
state_ta_explicit::transition* t = new state_ta_explicit::transition; state_ta_explicit::transition* t = new state_ta_explicit::transition;
t->dest = dest; t->dest = dest;
@ -282,17 +343,18 @@ namespace spot
} }
const ta::states_set_t* const ta::states_set_t
ta_explicit::get_initial_states_set() const ta_explicit::get_initial_states_set() const
{ {
return &initial_states_set_; return initial_states_set_;
} }
bdd bdd
ta_explicit::get_state_condition(const spot::state* initial_state) const ta_explicit::get_state_condition(const spot::state* initial_state) const
{ {
const state_ta_explicit* sta = dynamic_cast<const state_ta_explicit*> (initial_state); const state_ta_explicit* sta =
dynamic_cast<const state_ta_explicit*> (initial_state);
return sta->get_tgba_condition(); return sta->get_tgba_condition();
} }
@ -325,6 +387,14 @@ namespace spot
return new ta_explicit_succ_iterator(s); return new ta_explicit_succ_iterator(s);
} }
ta_succ_iterator*
ta_explicit::succ_iter(const spot::state* state, bdd condition) const
{
const state_ta_explicit* s = dynamic_cast<const state_ta_explicit*> (state);
assert(s);
return new ta_explicit_succ_iterator(s, condition);
}
bdd_dict* bdd_dict*
ta_explicit::get_dict() const ta_explicit::get_dict() const
{ {
@ -342,6 +412,10 @@ namespace spot
{ {
const state_ta_explicit* sta = dynamic_cast<const state_ta_explicit*> (s); const state_ta_explicit* sta = dynamic_cast<const state_ta_explicit*> (s);
assert(sta); assert(sta);
if (sta->get_tgba_condition() == bddtrue)
return tgba_->format_state(sta->get_tgba_state());
return tgba_->format_state(sta->get_tgba_state()) + "\n" return tgba_->format_state(sta->get_tgba_state()) + "\n"
+ bdd_format_formula(get_dict(), sta->get_tgba_condition()); + bdd_format_formula(get_dict(), sta->get_tgba_condition());
@ -354,11 +428,13 @@ namespace spot
for (it = states_set_.begin(); it != states_set_.end(); it++) for (it = states_set_.begin(); it != states_set_.end(); it++)
{ {
const state_ta_explicit* source = dynamic_cast<const state_ta_explicit*> (*it); const state_ta_explicit* source =
dynamic_cast<const state_ta_explicit*> (*it);
state_ta_explicit::transitions* trans = source->get_transitions(); state_ta_explicit::transitions* trans = source->get_transitions();
state_ta_explicit::transitions::iterator it_trans; state_ta_explicit::transitions::iterator it_trans;
if (trans != 0)
for (it_trans = trans->begin(); it_trans != trans->end();) for (it_trans = trans->begin(); it_trans != trans->end();)
{ {
if (source->get_tgba_condition() if (source->get_tgba_condition()
@ -376,4 +452,9 @@ namespace spot
} }
void
ta_explicit::free_state(const spot::state*) const
{
}
} }

View file

@ -37,8 +37,6 @@ namespace spot
class ta_explicit_succ_iterator; class ta_explicit_succ_iterator;
class ta_explicit; class ta_explicit;
/// ta_explicit explicit representa_explicittion of a Testing Automata_explicit /// ta_explicit explicit representa_explicittion of a Testing Automata_explicit
class ta_explicit : public ta class ta_explicit : public ta
{ {
@ -51,23 +49,27 @@ namespace spot
state_ta_explicit* state_ta_explicit*
add_state(state_ta_explicit* s); add_state(state_ta_explicit* s);
state_ta_explicit* void
add_initial_state(state_ta_explicit* s); add_to_initial_states_set(state* s);
void void
create_transition(state_ta_explicit* source, bdd condition, state_ta_explicit* dest); create_transition(state_ta_explicit* source, bdd condition,
state_ta_explicit* dest);
void void
delete_stuttering_transitions(); delete_stuttering_transitions();
// ta interface // ta interface
virtual virtual
~ta_explicit(); ~ta_explicit();
virtual const states_set_t* virtual const states_set_t
get_initial_states_set() const; get_initial_states_set() const;
virtual ta_succ_iterator* virtual ta_succ_iterator*
succ_iter(const spot::state* s) const; succ_iter(const spot::state* s) const;
virtual ta_succ_iterator*
succ_iter(const spot::state* s, bdd condition) const;
virtual bdd_dict* virtual bdd_dict*
get_dict() const; get_dict() const;
@ -86,6 +88,12 @@ namespace spot
virtual bdd virtual bdd
get_state_condition(const spot::state* s) const; get_state_condition(const spot::state* s) const;
virtual void
free_state(const spot::state* s) const;
virtual void
delete_stuttering_and_hole_successors(spot::state* s);
private: private:
// Disallow copy. // Disallow copy.
ta_explicit(const ta_explicit& other); ta_explicit(const ta_explicit& other);
@ -137,6 +145,10 @@ namespace spot
transitions* transitions*
get_transitions() const; get_transitions() const;
// return transitions filtred by condition
transitions*
get_transitions(bdd condition) const;
void void
add_transition(transition* t); add_transition(transition* t);
@ -156,6 +168,11 @@ namespace spot
is_initial_state() const; is_initial_state() const;
void void
set_initial_state(bool is_initial_state); set_initial_state(bool is_initial_state);
void
delete_stuttering_and_hole_successors();
void
free_transitions();
private: private:
const state* tgba_state_; const state* tgba_state_;
@ -164,6 +181,7 @@ namespace spot
bool is_accepting_state_; bool is_accepting_state_;
bool is_livelock_accepting_state_; bool is_livelock_accepting_state_;
transitions* transitions_; transitions* transitions_;
Sgi::hash_map<int, transitions*, Sgi::hash<int> > transitions_by_condition;
}; };
@ -173,6 +191,8 @@ namespace spot
public: public:
ta_explicit_succ_iterator(const state_ta_explicit* s); ta_explicit_succ_iterator(const state_ta_explicit* s);
ta_explicit_succ_iterator(const state_ta_explicit* s, bdd condition);
virtual void virtual void
first(); first();
virtual void virtual void
@ -185,11 +205,13 @@ namespace spot
virtual bdd virtual bdd
current_condition() const; current_condition() const;
virtual bool
is_stuttering_transition() const;
private: private:
state_ta_explicit::transitions* transitions_; state_ta_explicit::transitions* transitions_;
state_ta_explicit::transitions::const_iterator i_; state_ta_explicit::transitions::const_iterator i_;
const state_ta_explicit* source_;
}; };
} }

346
src/ta/taproduct.cc Normal file
View file

@ -0,0 +1,346 @@
// Copykripke_structure (C) 2010 Laboratoire de Recherche et Developpement
// de l Epita (LRDE).
//
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "taproduct.hh"
#include <cassert>
#include "misc/hashfunc.hh"
namespace spot
{
////////////////////////////////////////////////////////////
// state_ta_product
state_ta_product::state_ta_product(const state_ta_product& o) :
state(), ta_state_(o.get_ta_state()), kripke_state_(
o.get_kripke_state()->clone())
{
}
state_ta_product::~state_ta_product()
{
//see ta_product::free_state() method
delete kripke_state_;
}
int
state_ta_product::compare(const state* other) const
{
const state_ta_product* o = dynamic_cast<const state_ta_product*> (other);
assert(o);
int res = ta_state_->compare(o->get_ta_state());
if (res != 0)
return res;
return kripke_state_->compare(o->get_kripke_state());
}
size_t
state_ta_product::hash() const
{
// We assume that size_t is 32-bit wide.
return wang32_hash(ta_state_->hash()) ^ wang32_hash(kripke_state_->hash());
}
state_ta_product*
state_ta_product::clone() const
{
return new state_ta_product(*this);
}
////////////////////////////////////////////////////////////
// ta_succ_iterator_product
ta_succ_iterator_product::ta_succ_iterator_product(const state_ta_product* s,
const ta* t, const kripke* k) :
source_(s), ta_(t), kripke_(k)
{
kripke_succ_it_ = k->succ_iter(s->get_kripke_state());
current_state_ = 0;
}
ta_succ_iterator_product::~ta_succ_iterator_product()
{
// ta_->free_state(current_state_);
delete current_state_;
current_state_ = 0;
delete ta_succ_it_;
delete kripke_succ_it_;
}
void
ta_succ_iterator_product::step_()
{
if (!ta_succ_it_->done())
ta_succ_it_->next();
if (ta_succ_it_->done())
{
delete ta_succ_it_;
ta_succ_it_ = 0;
kripke_succ_it_->next();
}
}
void
ta_succ_iterator_product::first()
{
if (!kripke_succ_it_)
return;
ta_succ_it_ = 0;
kripke_succ_it_->first();
// If one of the two successor sets is empty initially, we reset
// kripke_succ_it_, so that done() can detect this situation easily. (We
// choose to reset kripke_succ_it_ because this variable is already used by
// done().)
if (kripke_succ_it_->done())
{
delete kripke_succ_it_;
kripke_succ_it_ = 0;
return;
}
next_non_stuttering_();
}
void
ta_succ_iterator_product::next()
{
delete current_state_;
current_state_ = 0;
if (is_stuttering_transition())
{
ta_succ_it_ = 0;
kripke_succ_it_->next();
}
else
step_();
if (!done())
next_non_stuttering_();
}
void
ta_succ_iterator_product::next_non_stuttering_()
{
bdd sc = kripke_->state_condition(source_->get_kripke_state());
while (!done())
{
state * kripke_succ_it_current_state = kripke_succ_it_->current_state();
bdd dc = kripke_->state_condition(kripke_succ_it_current_state);
is_stuttering_transition_ = (sc == dc);
if (is_stuttering_transition_)
{
//if stuttering transition, the TA automata stays in the same state
current_state_ = new state_ta_product(source_->get_ta_state(),
kripke_succ_it_current_state);
current_condition_ = bddtrue;
return;
}
if (ta_succ_it_ == 0){
current_condition_ = bdd_setxor(sc, dc);
ta_succ_it_ = ta_->succ_iter(source_->get_ta_state(), current_condition_);
ta_succ_it_->first();
}
if (!ta_succ_it_->done())
{
current_state_ = new state_ta_product(ta_succ_it_->current_state(),
kripke_succ_it_current_state);
return;
}
delete kripke_succ_it_current_state;
step_();
}
}
bool
ta_succ_iterator_product::done() const
{
return !kripke_succ_it_ || kripke_succ_it_->done();
}
state_ta_product*
ta_succ_iterator_product::current_state() const
{
//assert(!done());
//if stuttering transition, the TA automata stays in the same state
// if (is_stuttering_transition())
// return new state_ta_product(source_->get_ta_state(),
// kripke_succ_it_->current_state());
//
// return new state_ta_product(ta_succ_it_->current_state(),
// kripke_succ_it_->current_state());
return current_state_->clone();
}
bool
ta_succ_iterator_product::is_stuttering_transition() const
{
// assert(!done());
// bdd sc = kripke_->state_condition(source_->get_kripke_state());
// state * kripke_succ_it_current_state = kripke_succ_it_->current_state();
// bdd dc = kripke_->state_condition(kripke_succ_it_current_state);
// delete kripke_succ_it_current_state;
return is_stuttering_transition_;
}
bdd
ta_succ_iterator_product::current_condition() const
{
// assert(!done());
// bdd sc = kripke_->state_condition(source_->get_kripke_state());
// state * kripke_succ_it_current_state = kripke_succ_it_->current_state();
// bdd dc = kripke_->state_condition(kripke_succ_it_current_state);
// delete kripke_succ_it_current_state;
// return bdd_setxor(sc, dc);
return current_condition_;
}
////////////////////////////////////////////////////////////
// ta_product
ta_product::ta_product(const ta* testing_automata,
const kripke* kripke_structure) :
dict_(testing_automata->get_dict()), ta_(testing_automata), kripke_(
kripke_structure)
{
assert(dict_ == kripke_structure->get_dict());
dict_->register_all_variables_of(&ta_, this);
dict_->register_all_variables_of(&kripke_, this);
}
ta_product::~ta_product()
{
dict_->unregister_all_my_variables(this);
}
const ta::states_set_t
ta_product::get_initial_states_set() const
{
//build initial states set
const ta::states_set_t ta_init_states_set = ta_->get_initial_states_set();
ta::states_set_t::const_iterator it;
ta::states_set_t initial_states_set;
for (it = ta_init_states_set.begin(); it != ta_init_states_set.end(); it++)
{
state* kripke_init_state = kripke_->get_init_state();
if ((kripke_->state_condition(kripke_init_state))
== (ta_->get_state_condition(*it)))
{
state_ta_product* stp = new state_ta_product((*it),
kripke_init_state);
initial_states_set.insert(stp);
}
else
{
delete kripke_init_state;
}
}
return initial_states_set;
}
ta_succ_iterator_product*
ta_product::succ_iter(const state* s) const
{
const state_ta_product* stp = dynamic_cast<const state_ta_product*> (s);
assert(s);
return new ta_succ_iterator_product(stp, ta_, kripke_);
}
bdd_dict*
ta_product::get_dict() const
{
return dict_;
}
std::string
ta_product::format_state(const state* state) const
{
const state_ta_product* s = dynamic_cast<const state_ta_product*> (state);
assert(s);
return kripke_->format_state(s->get_kripke_state()) + " * \n"
+ ta_->format_state(s->get_ta_state());
}
bool
ta_product::is_accepting_state(const spot::state* s) const
{
const state_ta_product* stp = dynamic_cast<const state_ta_product*> (s);
return ta_->is_accepting_state(stp->get_ta_state());
}
bool
ta_product::is_livelock_accepting_state(const spot::state* s) const
{
const state_ta_product* stp = dynamic_cast<const state_ta_product*> (s);
return ta_->is_livelock_accepting_state(stp->get_ta_state());
}
bool
ta_product::is_initial_state(const spot::state* s) const
{
const state_ta_product* stp = dynamic_cast<const state_ta_product*> (s);
state* ta_s = stp->get_ta_state();
state* kr_s = stp->get_kripke_state();
return (ta_->is_initial_state(ta_s))
&& ((kripke_->get_init_state())->compare(kr_s) == 0)
&& ((kripke_->state_condition(kr_s))
== (ta_->get_state_condition(ta_s)));
}
bdd
ta_product::get_state_condition(const spot::state* s) const
{
const state_ta_product* stp = dynamic_cast<const state_ta_product*> (s);
state* ta_s = stp->get_ta_state();
return ta_->get_state_condition(ta_s);
}
void
ta_product::free_state(const spot::state* s) const
{
const state_ta_product* stp = dynamic_cast<const state_ta_product*> (s);
ta_->free_state(stp->get_ta_state());
delete stp;
}
}

180
src/ta/taproduct.hh Normal file
View file

@ -0,0 +1,180 @@
// Copyright (C) 2010 Laboratoire de Recherche et Developpement
// de l Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#ifndef SPOT_TA_TAPRODUCT_HH
# define SPOT_TA_TAPRODUCT_HH
#include "ta.hh"
#include "kripke/kripke.hh"
namespace spot
{
/// \brief A state for spot::ta_product.
///
/// This state is in fact a pair of state: the state from the ta
/// automaton and that of Kripke structure.
class state_ta_product : public state
{
public:
/// \brief Constructor
/// \param ta_state The state from the ta automaton.
/// \param kripke_state_ The state from Kripke structure.
state_ta_product(state* ta_state, state* kripke_state) :
ta_state_(ta_state), kripke_state_(kripke_state)
{
}
/// Copy constructor
state_ta_product(const state_ta_product& o);
virtual
~state_ta_product();
state*
get_ta_state() const
{
return ta_state_;
}
state*
get_kripke_state() const
{
return kripke_state_;
}
virtual int
compare(const state* other) const;
virtual size_t
hash() const;
virtual state_ta_product*
clone() const;
private:
state* ta_state_; ///< State from the ta automaton.
state* kripke_state_; ///< State from the kripke structure.
};
/// \brief Iterate over the successors of a product computed on the fly.
class ta_succ_iterator_product : public ta_succ_iterator
{
public:
ta_succ_iterator_product(const state_ta_product* s, const ta* t, const kripke* k);
virtual
~ta_succ_iterator_product();
// iteration
void
first();
void
next();
bool
done() const;
// inspection
state_ta_product*
current_state() const;
bdd
current_condition() const;
bool
is_stuttering_transition() const;
private:
//@{
/// Internal routines to advance to the next successor.
void
step_();
void
next_non_stuttering_();
//@}
protected:
const state_ta_product* source_;
const ta* ta_;
const kripke* kripke_;
ta_succ_iterator* ta_succ_it_;
tgba_succ_iterator* kripke_succ_it_;
state_ta_product* current_state_;
bdd current_condition_;
bool is_stuttering_transition_;
};
/// \brief A lazy product. (States are computed on the fly.)
class ta_product : public ta
{
public:
ta_product(const ta* testing_automata, const kripke* kripke_structure);
virtual
~ta_product();
virtual const states_set_t
get_initial_states_set() const;
virtual ta_succ_iterator_product*
succ_iter(const spot::state* s) const;
virtual ta_succ_iterator_product*
succ_iter(const spot::state* s, bdd condition) const {
if(condition == bddtrue) return succ_iter(s);
//TODO
return 0;
}
virtual bdd_dict*
get_dict() const;
virtual std::string
format_state(const spot::state* s) const;
virtual bool
is_accepting_state(const spot::state* s) const;
virtual bool
is_livelock_accepting_state(const spot::state* s) const;
virtual bool
is_initial_state(const spot::state* s) const;
virtual bdd
get_state_condition(const spot::state* s) const;
virtual void
free_state(const spot::state* s) const;
private:
bdd_dict* dict_;
const ta* ta_;
const kripke* kripke_;
// Disallow copy.
ta_product(const ta_product&);
ta_product&
operator=(const ta_product&);
};
}
#endif // SPOT_TA_TAPRODUCT_HH

View file

@ -27,11 +27,14 @@ taalgosdir = $(pkgincludedir)/taalgos
taalgos_HEADERS = \ taalgos_HEADERS = \
sba2ta.hh \ sba2ta.hh \
dotty.hh \ dotty.hh \
reachiter.hh reachiter.hh \
stats.hh \
emptinessta.hh
noinst_LTLIBRARIES = libtaalgos.la noinst_LTLIBRARIES = libtaalgos.la
libtaalgos_la_SOURCES = \ libtaalgos_la_SOURCES = \
sba2ta.cc \ sba2ta.cc \
dotty.cc \ dotty.cc \
reachiter.cc reachiter.cc \
stats.cc \
emptinessta.cc

View file

@ -43,11 +43,11 @@ namespace spot
os_ << "digraph G {" << std::endl; os_ << "digraph G {" << std::endl;
int n = 0; int n = 0;
const ta::states_set_t* init_states_set = const ta::states_set_t init_states_set =
t_automata_->get_initial_states_set(); t_automata_->get_initial_states_set();
ta::states_set_t::const_iterator it; ta::states_set_t::const_iterator it;
for (it = (init_states_set->begin()); it != init_states_set->end(); it++) for (it = (init_states_set.begin()); it != init_states_set.end(); it++)
{ {
// cout << (*it).first << " => " << (*it).second << endl; // cout << (*it).first << " => " << (*it).second << endl;
@ -99,7 +99,7 @@ namespace spot
} }
void void
process_link(int in, int out, const tgba_succ_iterator* si) process_link(int in, int out, const ta_succ_iterator* si)
{ {
os_ << " " << in << " -> " << out << " [label=\""; os_ << " " << in << " -> " << out << " [label=\"";

619
src/taalgos/emptinessta.cc Normal file
View file

@ -0,0 +1,619 @@
// Copyright (C) 2008 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire d'Informatique de
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
// #define TRACE
#include <iostream>
#ifdef TRACE
#define trace std::clog
#else
#define trace while (0) std::clog
#endif
#include "emptinessta.hh"
#include "misc/memusage.hh"
#include <math.h>
namespace spot
{
ta_check::ta_check(const ta* a, option_map o) :
a_(a), o_(o)
{
is_full_2_pass_ = o.get("is_full_2_pass", 0);
}
ta_check::~ta_check()
{
}
bool
ta_check::check()
{
// We use five main data in this algorithm:
// * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
numbered_state_heap* h =
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
// * num: the number of visited nodes. Used to set the order of each
// visited node,
int num = 1;
// * todo: the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a ta_succ_iterator
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack<pair_state_iter> todo;
// * init: the set of the depth-first search initial states
std::stack<spot::state*> init_set;
Sgi::hash_map<const state*, std::string, state_ptr_hash, state_ptr_equal>
colour;
trace
<< "PASS 1" << std::endl;
//const std::string WHITE = "W";
//const std::string GREY = "G";
//const std::string BLUE = "B";
//const std::string BLACK = "BK";
Sgi::hash_map<const state*, std::set<const state*, state_ptr_less_than>,
state_ptr_hash, state_ptr_equal> liveset;
std::stack<spot::state*> livelock_roots;
const ta::states_set_t init_states_set = a_->get_initial_states_set();
ta::states_set_t::const_iterator it;
for (it = init_states_set.begin(); it != init_states_set.end(); it++)
{
state* init_state = (*it);
init_set.push(init_state);
//colour[init_state] = WHITE;
}
while (!init_set.empty())
{
// Setup depth-first search from initial states.
{
state* init = dynamic_cast<state*> (init_set.top());
init_set.pop();
numbered_state_heap::state_index_p h_init = h->find(init);
if (h_init.first)
continue;
h->insert(init, ++num);
scc.push(num);
ta_succ_iterator* iter = a_->succ_iter(init);
iter->first();
todo.push(pair_state_iter(init, iter));
//colour[init] = GREY;
inc_depth();
//push potential root of live-lock accepting cycle
if (a_->is_livelock_accepting_state(init))
livelock_roots.push(init);
}
while (!todo.empty())
{
state* curr = todo.top().first;
// We are looking at the next successor in SUCC.
ta_succ_iterator* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
dec_depth();
trace
<< "PASS 1 : backtrack" << std::endl;
// fill rem with any component removed,
numbered_state_heap::state_index_p spi =
h->index(curr->clone());
assert(spi.first);
scc.rem().push_front(curr);
inc_depth();
// set the h value of the Backtracked state to negative value.
// colour[curr] = BLUE;
*spi.second = -std::abs(*spi.second);
// Backtrack livelock_roots.
if (!livelock_roots.empty() && !livelock_roots.top()->compare(
curr))
livelock_roots.pop();
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!scc.empty());
if (scc.top().index == std::abs(*spi.second))
{
// removing states
std::list<state*>::iterator i;
for (i = scc.rem().begin(); i != scc.rem().end(); ++i)
{
numbered_state_heap::state_index_p spi = h->index(
(*i)->clone());
assert(spi.first->compare(*i) == 0);
assert(*spi.second != -1);
*spi.second = -1;
//colour[*i] = BLACK;
}
dec_depth(scc.rem().size());
scc.pop();
}
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// We have a successor to look at.
inc_transitions();
trace
<< "PASS 1: transition" << std::endl;
// Fetch the values destination state we are interested in...
state* dest = succ->current_state();
//may be Buchi accepting scc
scc.top().is_accepting = a_->is_accepting_state(curr)
&& !succ->is_stuttering_transition();
bool is_stuttering_transition = succ->is_stuttering_transition();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state?
numbered_state_heap::state_index_p spi = h->find(dest);
// Is this a new state?
if (!spi.first)
{
// Number it, stack it, and register its successors
// for later processing.
h->insert(dest, ++num);
scc.push(num);
ta_succ_iterator* iter = a_->succ_iter(dest);
iter->first();
todo.push(pair_state_iter(dest, iter));
//colour[dest] = GREY;
inc_depth();
//push potential root of live-lock accepting cycle
if (a_->is_livelock_accepting_state(dest)
&& !is_stuttering_transition)
livelock_roots.push(dest);
continue;
}
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
continue;
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = std::abs(*spi.second);
std::list<state*> rem;
bool acc = false;
while (threshold < scc.top().index)
{
assert(!scc.empty());
acc |= scc.top().is_accepting;
rem.splice(rem.end(), scc.rem());
scc.pop();
}
// Note that we do not always have
// threshold == scc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
scc.top().is_accepting |= acc;
scc.rem().splice(scc.rem().end(), rem);
if (scc.top().is_accepting)
{
clear(h, todo, init_set);
trace
<< "PASS 1: SUCCESS" << std::endl;
return true;
}
//ADDLINKS
if (!is_full_2_pass_ && a_->is_livelock_accepting_state(curr)
&& is_stuttering_transition)
{
trace
<< "PASS 1: heuristic livelock detection " << std::endl;
const state* dest = spi.first;
std::set<const state*, state_ptr_less_than> liveset_dest =
liveset[dest];
std::set<const state*, state_ptr_less_than> liveset_curr =
liveset[curr];
int h_livelock_root = 0;
if (!livelock_roots.empty())
h_livelock_root = *(h->find((livelock_roots.top()))).second;
if (heuristic_livelock_detection(dest, h, h_livelock_root,
liveset_curr))
{
clear(h, todo, init_set);
return true;
}
std::set<const state*, state_ptr_less_than>::const_iterator it;
for (it = liveset_dest.begin(); it != liveset_dest.end(); it++)
{
const state* succ = (*it);
if (heuristic_livelock_detection(succ, h, h_livelock_root,
liveset_curr))
{
clear(h, todo, init_set);
return true;
}
}
}
}
}
clear(h, todo, init_set);
return livelock_detection(a_);
}
bool
ta_check::heuristic_livelock_detection(const state * u,
numbered_state_heap* h, int h_livelock_root, std::set<const state*,
state_ptr_less_than> liveset_curr)
{
numbered_state_heap::state_index_p hu = h->find(u);
if (*hu.second > 0) // colour[u] == GREY
{
if (*hu.second >= h_livelock_root)
{
trace
<< "PASS 1: heuristic livelock detection SUCCESS" << std::endl;
return true;
}
liveset_curr.insert(u);
}
return false;
}
bool
ta_check::livelock_detection(const ta* t)
{
// We use five main data in this algorithm:
// * sscc: a stack of strongly stuttering-connected components (SSCC)
// * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
numbered_state_heap* h =
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
// * num: the number of visited nodes. Used to set the order of each
// visited node,
trace
<< "PASS 2" << std::endl;
int num = 0;
// * todo: the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack<pair_state_iter> todo;
// * init: the set of the depth-first search initial states
std::stack<spot::state*> init_set;
const ta::states_set_t init_states_set = a_->get_initial_states_set();
ta::states_set_t::const_iterator it;
for (it = init_states_set.begin(); it != init_states_set.end(); it++)
{
state* init_state = (*it);
init_set.push(init_state);
}
while (!init_set.empty())
{
// Setup depth-first search from initial states.
{
state* init = init_set.top();
init_set.pop();
numbered_state_heap::state_index_p h_init = h->find(init);
if (h_init.first)
continue;
h->insert(init, ++num);
sscc.push(num);
sscc.top().is_accepting = t->is_livelock_accepting_state(init);
ta_succ_iterator* iter = t->succ_iter(init);
iter->first();
todo.push(pair_state_iter(init, iter));
inc_depth();
}
while (!todo.empty())
{
state* curr = todo.top().first;
// We are looking at the next successor in SUCC.
ta_succ_iterator* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
dec_depth();
trace
<< "PASS 2 : backtrack" << std::endl;
// fill rem with any component removed,
numbered_state_heap::state_index_p spi =
h->index(curr->clone());
assert(spi.first);
sscc.rem().push_front(curr);
inc_depth();
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!sscc.empty());
if (sscc.top().index == *spi.second)
{
// removing states
std::list<state*>::iterator i;
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
{
numbered_state_heap::state_index_p spi = h->index(
(*i)->clone());
assert(spi.first->compare(*i) == 0);
assert(*spi.second != -1);
*spi.second = -1;
}
dec_depth(sscc.rem().size());
sscc.pop();
}
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// We have a successor to look at.
inc_transitions();
trace
<< "PASS 2 : transition" << std::endl;
// Fetch the values destination state we are interested in...
state* dest = succ->current_state();
bool is_stuttering_transition = succ->is_stuttering_transition();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
numbered_state_heap::state_index_p spi = h->find(dest);
// Is this a new state?
if (!spi.first)
{
// Are we going to a new state through a stuttering transition?
if (!is_stuttering_transition)
{
init_set.push(dest);
continue;
}
// Number it, stack it, and register its successors
// for later processing.
h->insert(dest, ++num);
sscc.push(num);
sscc.top().is_accepting = t->is_livelock_accepting_state(dest);
ta_succ_iterator* iter = t->succ_iter(dest);
iter->first();
todo.push(pair_state_iter(dest, iter));
inc_depth();
continue;
}
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
continue;
//self loop state
if (!curr->compare(spi.first))
{
state * self_loop_state = (curr);
if (t->is_livelock_accepting_state(self_loop_state))
{
clear(h, todo, init_set);
trace
<< "PASS 2: SUCCESS" << std::endl;
return true;
}
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = *spi.second;
std::list<state*> rem;
bool acc = false;
while (threshold < sscc.top().index)
{
assert(!sscc.empty());
acc |= sscc.top().is_accepting;
rem.splice(rem.end(), sscc.rem());
sscc.pop();
}
// Note that we do not always have
// threshold == sscc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
sscc.top().is_accepting |= acc;
sscc.rem().splice(sscc.rem().end(), rem);
if (sscc.top().is_accepting)
{
clear(h, todo, init_set);
trace
<< "PASS 2: SUCCESS" << std::endl;
return true;
}
}
}
clear(h, todo, init_set);
return false;
}
void
ta_check::clear(numbered_state_heap* h, std::stack<pair_state_iter> todo,
std::stack<spot::state*> init_states)
{
set_states(states() + h->size());
while (!init_states.empty())
{
a_->free_state(init_states.top());
init_states.pop();
}
// Release all iterators in TODO.
while (!todo.empty())
{
delete todo.top().second;
todo.pop();
dec_depth();
}
delete h;
}
std::ostream&
ta_check::print_stats(std::ostream& os) const
{
// ecs_->print_stats(os);
os << states() << " unique states visited" << std::endl;
//TODO sscc;
os << scc.size() << " strongly connected components in search stack"
<< std::endl;
os << transitions() << " transitions explored" << std::endl;
os << max_depth() << " items max in DFS search stack" << std::endl;
return os;
}
//////////////////////////////////////////////////////////////////////
}

View file

@ -0,0 +1,94 @@
// Copyright (C) 2008 Laboratoire de Recherche et Development de
// l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire d'Informatique de
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#ifndef SPOT_TAALGOS_EMPTINESS_HH
# define SPOT_TAALGOS_EMPTINESS_HH
#include "ta/ta.hh"
#include "misc/optionmap.hh"
#include "tgbaalgos/gtec/nsheap.hh"
#include "tgbaalgos/emptiness_stats.hh"
#include <stack>
namespace spot
{
namespace
{
typedef std::pair<spot::state*, ta_succ_iterator*> pair_state_iter;
}
/// \brief An implementation of the ta emptiness-check algorithm.
///
/// See the documentation for spot::ta.
class ta_check : public ec_statistics
{
public:
ta_check(const ta* a, option_map o = option_map());
virtual
~ta_check();
/// Check whether the automaton's language is empty.
virtual bool
check();
virtual bool
livelock_detection(const ta* t);
virtual std::ostream&
print_stats(std::ostream& os) const;
/// \brief Return the status of the emptiness-check.
///
/// When check() succeed, the status should be passed along
/// to spot::counter_example.
///
/// This status should not be deleted, it is a pointer
/// to a member of this class that will be deleted when
/// the ta object is deleted.
// const tgba_check_status* result() const;
protected:
void
clear(numbered_state_heap* h, std::stack<pair_state_iter> todo, std::stack<
spot::state*> init_set);
bool
heuristic_livelock_detection(const state * stuttering_succ,
numbered_state_heap* h, int h_livelock_root, std::set<const state*,
state_ptr_less_than> liveset_curr);
const ta* a_; ///< The automaton.
option_map o_; ///< The options
bool is_full_2_pass_;
// * scc: a stack of strongly connected components (SCC)
scc_stack_ta scc;
// * sscc: a stack of strongly stuttering-connected components (SSCC)
scc_stack_ta sscc;
};
/// @}
}
#endif // SPOT_TAALGOS_EMPTINESS_HH

View file

@ -42,7 +42,7 @@ namespace spot
// Advance the iterator before deleting the "key" pointer. // Advance the iterator before deleting the "key" pointer.
const state* ptr = s->first; const state* ptr = s->first;
++s; ++s;
delete ptr; t_automata_->free_state(ptr);
} }
} }
@ -51,13 +51,13 @@ namespace spot
{ {
int n = 0; int n = 0;
start(); start();
const ta::states_set_t* init_states_set = const ta::states_set_t init_states_set =
t_automata_->get_initial_states_set(); t_automata_->get_initial_states_set();
ta::states_set_t::const_iterator it; ta::states_set_t::const_iterator it;
for (it = init_states_set->begin(); it != init_states_set->end(); it++) for (it = init_states_set.begin(); it != init_states_set.end(); it++)
{ {
state* init_state = (*it)->clone(); state* init_state = (*it);
if (want_state(init_state)) if (want_state(init_state))
add_state(init_state); add_state(init_state);
seen[init_state] = ++n; seen[init_state] = ++n;
@ -69,11 +69,11 @@ namespace spot
{ {
assert(seen.find(t) != seen.end()); assert(seen.find(t) != seen.end());
int tn = seen[t]; int tn = seen[t];
tgba_succ_iterator* si = t_automata_->succ_iter(t); ta_succ_iterator* si = t_automata_->succ_iter(t);
process_state(t, tn); process_state(t, tn);
for (si->first(); !si->done(); si->next()) for (si->first(); !si->done(); si->next())
{ {
const state* current = si->current_state()->clone(); const state* current = si->current_state();
seen_map::const_iterator s = seen.find(current); seen_map::const_iterator s = seen.find(current);
bool ws = want_state(current); bool ws = want_state(current);
if (s == seen.end()) if (s == seen.end())
@ -89,7 +89,7 @@ namespace spot
{ {
if (ws) if (ws)
process_link(tn, s->second, si); process_link(tn, s->second, si);
delete current; t_automata_->free_state(current);
} }
} }
delete si; delete si;
@ -119,7 +119,7 @@ namespace spot
} }
void void
ta_reachable_iterator::process_link(int, int, const tgba_succ_iterator*) ta_reachable_iterator::process_link(int, int, const ta_succ_iterator*)
{ {
} }

View file

@ -92,7 +92,7 @@ namespace spot
/// spot::ta_reachable_iterator instance and destroyed when the /// spot::ta_reachable_iterator instance and destroyed when the
/// instance is destroyed. /// instance is destroyed.
virtual void virtual void
process_link(int in, int out, const tgba_succ_iterator* si); process_link(int in, int out, const ta_succ_iterator* si);
protected: protected:

View file

@ -30,7 +30,6 @@
#include <stack> #include <stack>
#include "sba2ta.hh" #include "sba2ta.hh"
using namespace std; using namespace std;
namespace spot namespace spot
@ -42,26 +41,32 @@ namespace spot
ta_explicit* ta = new spot::ta_explicit(tgba_); ta_explicit* ta = new spot::ta_explicit(tgba_);
// build I set: std::stack<state_ta_explicit*> todo;
bdd init_condition;
bdd all_props = bddtrue;
ta::states_set_t todo;
while ((init_condition = bdd_satoneset(all_props, atomic_propositions_set_, // build Initial states set:
bddtrue)) != bddfalse) state* tgba_init_state = tgba_->get_init_state();
bdd tgba_condition = tgba_->support_conditions(tgba_init_state);
bdd satone_tgba_condition;
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
atomic_propositions_set_, bddtrue)) != bddfalse)
{ {
all_props -= init_condition; tgba_condition -= satone_tgba_condition;
state_ta_explicit* init_state = new state_ta_explicit((tgba_->get_init_state()), state_ta_explicit* init_state = new state_ta_explicit(
init_condition, true); tgba_init_state->clone(), satone_tgba_condition, true,
ta->add_initial_state(init_state); tgba_->state_is_accepting(tgba_init_state));
todo.insert(init_state); state_ta_explicit* is = ta->add_state(init_state);
assert(is == init_state);
ta->add_to_initial_states_set(is);
todo.push(init_state);
} }
delete tgba_init_state;
while (!todo.empty()) while (!todo.empty())
{ {
ta::states_set_t::iterator todo_it = todo.begin(); state_ta_explicit* source = todo.top();
state_ta_explicit* source = dynamic_cast<state_ta_explicit*> (*todo_it); todo.pop();
todo.erase(todo_it);
tgba_succ_iterator* tgba_succ_it = tgba_->succ_iter( tgba_succ_iterator* tgba_succ_it = tgba_->succ_iter(
source->get_tgba_state()); source->get_tgba_state());
@ -75,9 +80,17 @@ namespace spot
{ {
tgba_condition -= satone_tgba_condition; tgba_condition -= satone_tgba_condition;
state_ta_explicit* new_dest = new state_ta_explicit(tgba_state->clone(),
satone_tgba_condition, false, tgba_->state_is_accepting( bdd all_props = bddtrue;
tgba_state)); bdd dest_condition;
if (satone_tgba_condition == source->get_tgba_condition())
while ((dest_condition = bdd_satoneset(all_props,
atomic_propositions_set_, bddtrue)) != bddfalse)
{
all_props -= dest_condition;
state_ta_explicit* new_dest = new state_ta_explicit(
tgba_state->clone(), dest_condition, false,
tgba_->state_is_accepting(tgba_state));
state_ta_explicit* dest = ta->add_state(new_dest); state_ta_explicit* dest = ta->add_state(new_dest);
@ -89,12 +102,13 @@ namespace spot
} }
else else
{ {
todo.insert(dest); todo.push(dest);
} }
ta->create_transition(source, bdd_setxor( ta->create_transition(source, bdd_setxor(
source->get_tgba_condition(), dest->get_tgba_condition()), source->get_tgba_condition(),
dest); dest->get_tgba_condition()), dest);
}
} }
delete tgba_state; delete tgba_state;
@ -105,8 +119,6 @@ namespace spot
compute_livelock_acceptance_states(ta); compute_livelock_acceptance_states(ta);
ta->delete_stuttering_transitions();
return ta; return ta;
} }
@ -121,7 +133,7 @@ namespace spot
{ {
// We use five main data in this algorithm: // We use five main data in this algorithm:
// * sscc: a stack of strongly stuttering-connected components (SSCC) // * sscc: a stack of strongly stuttering-connected components (SSCC)
sscc_stack sscc; scc_stack_ta sscc;
// * h: a hash of all visited nodes, with their order, // * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper) // (it is called "Hash" in Couvreur's paper)
@ -140,23 +152,24 @@ namespace spot
std::stack<pair_state_iter> todo; std::stack<pair_state_iter> todo;
// * init: the set of the depth-first search initial states // * init: the set of the depth-first search initial states
ta::states_set_t init_set; std::stack<state*> init_set;
ta::states_set_t::const_iterator it; ta::states_set_t::const_iterator it;
for (it = (testing_automata->get_initial_states_set())->begin(); it != (testing_automata->get_initial_states_set())->end(); it++) ta::states_set_t init_states = testing_automata->get_initial_states_set();
for (it = init_states.begin(); it != init_states.end(); it++)
{ {
state* init_state = (*it); state* init_state = dynamic_cast<state_ta_explicit*> (*it);
init_set.insert(init_state); init_set.push(init_state);
} }
while (!init_set.empty()) while (!init_set.empty())
{ {
// Setup depth-first search from an initial state. // Setup depth-first search from initial states.
{ {
ta::states_set_t::iterator init_set_it = init_set.begin(); state_ta_explicit* init =
state_ta_explicit* init = dynamic_cast<state_ta_explicit*> (*init_set_it); dynamic_cast<state_ta_explicit*> (init_set.top());
init_set.erase(init_set_it); init_set.pop();
state_ta_explicit* init_clone = init->clone(); state_ta_explicit* init_clone = init->clone();
numbered_state_heap::state_index_p h_init = h->find(init_clone); numbered_state_heap::state_index_p h_init = h->find(init_clone);
@ -165,8 +178,8 @@ namespace spot
h->insert(init_clone, ++num); h->insert(init_clone, ++num);
sscc.push(num); sscc.push(num);
sscc.top().is_accepting = testing_automata->is_accepting_state(init); sscc.top().is_accepting
sscc.top().is_initial = testing_automata->is_initial_state(init); = testing_automata->is_accepting_state(init);
tgba_succ_iterator* iter = testing_automata->succ_iter(init); tgba_succ_iterator* iter = testing_automata->succ_iter(init);
iter->first(); iter->first();
todo.push(pair_state_iter(init, iter)); todo.push(pair_state_iter(init, iter));
@ -176,11 +189,19 @@ namespace spot
while (!todo.empty()) while (!todo.empty())
{ {
state* curr = todo.top().first;
numbered_state_heap::state_index_p spi = h->find(curr->clone());
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
{
todo.pop();
continue;
}
// We are looking at the next successor in SUCC. // We are looking at the next successor in SUCC.
tgba_succ_iterator* succ = todo.top().second; tgba_succ_iterator* succ = todo.top().second;
state* curr = todo.top().first;
// If there is no more successor, backtrack. // If there is no more successor, backtrack.
if (succ->done()) if (succ->done())
{ {
@ -190,7 +211,8 @@ namespace spot
todo.pop(); todo.pop();
// fill rem with any component removed, // fill rem with any component removed,
numbered_state_heap::state_index_p spi = h->index(curr->clone()); numbered_state_heap::state_index_p spi =
h->index(curr->clone());
assert(spi.first); assert(spi.first);
sscc.rem().push_front(curr); sscc.rem().push_front(curr);
@ -207,8 +229,9 @@ namespace spot
&& (sscc.rem().size() > 1)); && (sscc.rem().size() > 1));
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i) for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
{ {
numbered_state_heap::state_index_p spi = h->index((*i)->clone()); numbered_state_heap::state_index_p spi = h->index(
assert(spi.first->compare(*i)==0); (*i)->clone());
assert(spi.first->compare(*i) == 0);
assert(*spi.second != -1); assert(*spi.second != -1);
*spi.second = -1; *spi.second = -1;
if (is_livelock_accepting_sscc) if (is_livelock_accepting_sscc)
@ -223,34 +246,14 @@ namespace spot
} }
if (sscc.top().is_initial)
{//if it is an initial sscc
//add the state to I (=the initial states set)
state_ta_explicit * initial_state =
dynamic_cast<state_ta_explicit*> (*i);
testing_automata->add_initial_state(initial_state);
}
} }
is_livelock_accepting_sscc = testing_automata->is_livelock_accepting_state(
*sscc.rem().begin());
sscc.pop(); sscc.pop();
if (is_livelock_accepting_sscc && !sscc.empty())
{
sscc.top().is_accepting = true;
state_ta_explicit * livelock_accepting_state =
dynamic_cast<state_ta_explicit*> (todo.top().first);
livelock_accepting_state->set_livelock_accepting_state(
true);
} }
if (sscc.top().is_initial && !sscc.empty())
sscc.top().is_initial = true;
}
// automata reduction
testing_automata->delete_stuttering_and_hole_successors(curr);
delete succ; delete succ;
// Do not delete CURR: it is a key in H. // Do not delete CURR: it is a key in H.
continue; continue;
@ -266,17 +269,18 @@ namespace spot
// Are we going to a new state through a stuttering transition? // Are we going to a new state through a stuttering transition?
bool is_stuttering_transition = testing_automata->get_state_condition(curr) bool is_stuttering_transition =
testing_automata->get_state_condition(curr)
== testing_automata->get_state_condition(dest); == testing_automata->get_state_condition(dest);
state* dest_clone = dest->clone(); state* dest_clone = dest->clone();
numbered_state_heap::state_index_p spi = h->find(dest_clone); spi = h->find(dest_clone);
// Is this a new state? // Is this a new state?
if (!spi.first) if (!spi.first)
{ {
if (!is_stuttering_transition) if (!is_stuttering_transition)
{ {
init_set.insert(dest); init_set.push(dest);
delete dest_clone; delete dest_clone;
continue; continue;
} }
@ -285,8 +289,9 @@ namespace spot
// for later processing. // for later processing.
h->insert(dest_clone, ++num); h->insert(dest_clone, ++num);
sscc.push(num); sscc.push(num);
sscc.top().is_accepting = testing_automata->is_accepting_state(dest); sscc.top().is_accepting = testing_automata->is_accepting_state(
sscc.top().is_initial = testing_automata->is_initial_state(dest); dest);
tgba_succ_iterator* iter = testing_automata->succ_iter(dest); tgba_succ_iterator* iter = testing_automata->succ_iter(dest);
iter->first(); iter->first();
todo.push(pair_state_iter(dest, iter)); todo.push(pair_state_iter(dest, iter));
@ -299,7 +304,8 @@ namespace spot
if (!curr->compare(dest)) if (!curr->compare(dest))
{ {
state_ta_explicit * self_loop_state = dynamic_cast<state_ta_explicit*> (curr); state_ta_explicit * self_loop_state =
dynamic_cast<state_ta_explicit*> (curr);
if (testing_automata->is_accepting_state(self_loop_state)) if (testing_automata->is_accepting_state(self_loop_state))
self_loop_state->set_livelock_accepting_state(true); self_loop_state->set_livelock_accepting_state(true);
@ -320,13 +326,12 @@ namespace spot
int threshold = *spi.second; int threshold = *spi.second;
std::list<state*> rem; std::list<state*> rem;
bool acc = false; bool acc = false;
bool init = false;
while (threshold < sscc.top().index) while (threshold < sscc.top().index)
{ {
assert(!sscc.empty()); assert(!sscc.empty());
acc |= sscc.top().is_accepting; acc |= sscc.top().is_accepting;
init |= sscc.top().is_initial;
rem.splice(rem.end(), sscc.rem()); rem.splice(rem.end(), sscc.rem());
sscc.pop(); sscc.pop();
@ -339,7 +344,6 @@ namespace spot
// Accumulate all acceptance conditions into the merged SSCC. // Accumulate all acceptance conditions into the merged SSCC.
sscc.top().is_accepting |= acc; sscc.top().is_accepting |= acc;
sscc.top().is_initial |= init;
sscc.rem().splice(sscc.rem().end(), rem); sscc.rem().splice(sscc.rem().end(), rem);

79
src/taalgos/stats.cc Normal file
View file

@ -0,0 +1,79 @@
// Copyright (C) 2008 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
// Copyright (C) 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include <iostream>
#include "ta/ta.hh"
#include "stats.hh"
#include "reachiter.hh"
namespace spot
{
namespace
{
class stats_bfs : public ta_reachable_iterator_breadth_first
{
public:
stats_bfs(const ta* a, ta_statistics& s) :
ta_reachable_iterator_breadth_first(a), s_(s)
{
}
void
process_state(const state* s, int)
{
++s_.states;
if (t_automata_->is_accepting_state(s)
|| t_automata_->is_livelock_accepting_state(s))
++s_.acceptance_states;
}
void
process_link(int, int, const ta_succ_iterator*)
{
++s_.transitions;
}
private:
ta_statistics& s_;
};
} // anonymous
std::ostream&
ta_statistics::dump(std::ostream& out) const
{
out << "transitions: " << transitions << std::endl;
out << "states: " << states << std::endl;
return out;
}
ta_statistics
stats_reachable(const ta* t)
{
ta_statistics s =
{ 0, 0, 0};
stats_bfs d(t, s);
d.run();
return s;
}
}

51
src/taalgos/stats.hh Normal file
View file

@ -0,0 +1,51 @@
// Copyright (C) 2008 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
// Copyright (C) 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#ifndef SPOT_TAALGOS_STATS_HH
# define SPOT_TAALGOS_STATS_HH
#include "ta/ta.hh"
#include <iosfwd>
namespace spot
{
/// \addtogroup ta_misc
/// @{
struct ta_statistics
{
unsigned transitions;
unsigned states;
unsigned acceptance_states;
std::ostream& dump(std::ostream& out) const;
};
/// \brief Compute statistics for an automaton.
ta_statistics stats_reachable(const ta* t);
/// @}
}
#endif // SPOT_TAALGOS_STATS_HH

View file

@ -1061,13 +1061,11 @@ main(int argc, char** argv)
} }
const spot::tgba* product_degeneralized = 0;
if (ta_opt) if (ta_opt)
{ {
spot::tgba_sba_proxy* degeneralized_new = 0; const spot::tgba_sba_proxy* degeneralized_new = 0;
spot::tgba_sba_proxy* degeneralized = const spot::tgba_sba_proxy* degeneralized =
dynamic_cast<spot::tgba_sba_proxy*> (a); dynamic_cast<const spot::tgba_sba_proxy*> (a);
if (degeneralized == 0) if (degeneralized == 0)
degeneralized_new = degeneralized = new spot::tgba_sba_proxy(a); degeneralized_new = degeneralized = new spot::tgba_sba_proxy(a);
@ -1092,6 +1090,7 @@ main(int argc, char** argv)
output = -1; output = -1;
} }
spot::tgba* product_degeneralized = 0;
if (system) if (system)
{ {
@ -1120,6 +1119,7 @@ main(int argc, char** argv)
} }
} }
if (echeck_inst if (echeck_inst
&& (a->number_of_acceptance_conditions() && (a->number_of_acceptance_conditions()
< echeck_inst->min_acceptance_conditions())) < echeck_inst->min_acceptance_conditions()))