product: optimize product with weak automata
Fixes #350. * spot/twaalgos/product.cc: Implement this change. * NEWS, spot/twaalgos/product.hh: Mention it. * spot/twa/acc.cc, spot/twa/acc.hh (acc_cond::sat_mark): New method. * tests/python/_product_weak.ipynb: New file. * tests/Makefile.am: Add it. * tests/python/automata.ipynb, tests/python/highlighting.ipynb, tests/python/product.ipynb, tests/core/prodor.test: Adjust test cases.
This commit is contained in:
parent
b655038803
commit
a738801edf
11 changed files with 15348 additions and 1605 deletions
|
|
@ -40,33 +40,18 @@ namespace spot
|
|||
}
|
||||
};
|
||||
|
||||
|
||||
template<typename T>
|
||||
static
|
||||
twa_graph_ptr product_aux(const const_twa_graph_ptr& left,
|
||||
const const_twa_graph_ptr& right,
|
||||
unsigned left_state,
|
||||
unsigned right_state,
|
||||
bool and_acc)
|
||||
void product_main(const const_twa_graph_ptr& left,
|
||||
const const_twa_graph_ptr& right,
|
||||
unsigned left_state,
|
||||
unsigned right_state,
|
||||
twa_graph_ptr res, T merge_acc)
|
||||
{
|
||||
if (!(left->is_existential() && right->is_existential()))
|
||||
throw std::runtime_error
|
||||
("product() does not support alternating automata");
|
||||
std::unordered_map<product_state, unsigned, product_state_hash> s2n;
|
||||
std::deque<std::pair<product_state, unsigned>> todo;
|
||||
|
||||
if (left->get_dict() != right->get_dict())
|
||||
throw std::runtime_error("product: left and right automata should "
|
||||
"share their bdd_dict");
|
||||
auto res = make_twa_graph(left->get_dict());
|
||||
res->copy_ap_of(left);
|
||||
res->copy_ap_of(right);
|
||||
auto left_num = left->num_sets();
|
||||
auto right_acc = right->get_acceptance() << left_num;
|
||||
if (and_acc)
|
||||
right_acc &= left->get_acceptance();
|
||||
else
|
||||
right_acc |= left->get_acceptance();
|
||||
res->set_acceptance(left_num + right->num_sets(), right_acc);
|
||||
|
||||
auto v = new product_states;
|
||||
res->set_named_prop("product-states", v);
|
||||
|
||||
|
|
@ -86,10 +71,10 @@ namespace spot
|
|||
};
|
||||
|
||||
res->set_init_state(new_state(left_state, right_state));
|
||||
if (right_acc.is_f())
|
||||
if (res->acc().is_f())
|
||||
// Do not bother doing any work if the resulting acceptance is
|
||||
// false.
|
||||
return res;
|
||||
return;
|
||||
while (!todo.empty())
|
||||
{
|
||||
auto top = todo.front();
|
||||
|
|
@ -102,10 +87,192 @@ namespace spot
|
|||
continue;
|
||||
auto dst = new_state(l.dst, r.dst);
|
||||
res->new_edge(top.second, dst, cond,
|
||||
l.acc | (r.acc << left_num));
|
||||
merge_acc(l.acc, r.acc));
|
||||
// If right is deterministic, we can abort immediately!
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static
|
||||
twa_graph_ptr product_aux(const const_twa_graph_ptr& left,
|
||||
const const_twa_graph_ptr& right,
|
||||
unsigned left_state,
|
||||
unsigned right_state,
|
||||
bool and_acc)
|
||||
{
|
||||
if (SPOT_UNLIKELY(!(left->is_existential() && right->is_existential())))
|
||||
throw std::runtime_error
|
||||
("product() does not support alternating automata");
|
||||
if (SPOT_UNLIKELY(left->get_dict() != right->get_dict()))
|
||||
throw std::runtime_error("product: left and right automata should "
|
||||
"share their bdd_dict");
|
||||
|
||||
auto res = make_twa_graph(left->get_dict());
|
||||
res->copy_ap_of(left);
|
||||
res->copy_ap_of(right);
|
||||
|
||||
bool leftweak = left->prop_weak().is_true();
|
||||
bool rightweak = right->prop_weak().is_true();
|
||||
// We have optimization to the standard product in case one
|
||||
// of the arguments is weak. However these optimizations
|
||||
// are pointless if the said arguments are "t" or "f".
|
||||
if ((leftweak || rightweak)
|
||||
&& (left->num_sets() > 0) && (right->num_sets() > 0))
|
||||
{
|
||||
// If both automata are weak, we can restrict the result to
|
||||
// Büchi or co-Büchi. We will favor Büchi unless the two
|
||||
// operands are co-Büchi.
|
||||
if (leftweak && rightweak)
|
||||
{
|
||||
weak_weak:
|
||||
acc_cond::mark_t accmark = {0};
|
||||
acc_cond::mark_t rejmark = {};
|
||||
if (left->acc().is_co_buchi() && right->acc().is_co_buchi())
|
||||
{
|
||||
res->set_co_buchi();
|
||||
std::swap(accmark, rejmark);
|
||||
}
|
||||
else
|
||||
{
|
||||
res->set_buchi();
|
||||
}
|
||||
res->prop_weak(true);
|
||||
auto& lacc = left->acc();
|
||||
auto& racc = right->acc();
|
||||
if (and_acc)
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (lacc.accepting(ml) && racc.accepting(mr))
|
||||
return accmark;
|
||||
else
|
||||
return rejmark;
|
||||
});
|
||||
else
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (lacc.accepting(ml) || racc.accepting(mr))
|
||||
return accmark;
|
||||
else
|
||||
return rejmark;
|
||||
});
|
||||
}
|
||||
else if (!rightweak)
|
||||
{
|
||||
if (and_acc)
|
||||
{
|
||||
auto rightunsatmark = right->acc().unsat_mark();
|
||||
if (!rightunsatmark.first)
|
||||
{
|
||||
// Left is weak. Right was not weak, but it is
|
||||
// always accepting. We can therefore pretend
|
||||
// that right is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
res->copy_acceptance_of(right);
|
||||
acc_cond::mark_t rejmark = rightunsatmark.second;
|
||||
auto& lacc = left->acc();
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (lacc.accepting(ml))
|
||||
return mr;
|
||||
else
|
||||
return rejmark;
|
||||
});
|
||||
}
|
||||
else
|
||||
{
|
||||
auto rightsatmark = right->acc().sat_mark();
|
||||
if (!rightsatmark.first)
|
||||
{
|
||||
// Left is weak. Right was not weak, but it is
|
||||
// always rejecting. We can therefore pretend
|
||||
// that right is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
res->copy_acceptance_of(right);
|
||||
acc_cond::mark_t accmark = rightsatmark.second;
|
||||
auto& lacc = left->acc();
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (!lacc.accepting(ml))
|
||||
return mr;
|
||||
else
|
||||
return accmark;
|
||||
});
|
||||
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(!leftweak);
|
||||
if (and_acc)
|
||||
{
|
||||
auto leftunsatmark = left->acc().unsat_mark();
|
||||
if (!leftunsatmark.first)
|
||||
{
|
||||
// Right is weak. Left was not weak, but it is
|
||||
// always accepting. We can therefore pretend
|
||||
// that left is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
res->copy_acceptance_of(left);
|
||||
acc_cond::mark_t rejmark = leftunsatmark.second;
|
||||
auto& racc = right->acc();
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (racc.accepting(mr))
|
||||
return ml;
|
||||
else
|
||||
return rejmark;
|
||||
});
|
||||
}
|
||||
else
|
||||
{
|
||||
auto leftsatmark = left->acc().sat_mark();
|
||||
if (!leftsatmark.first)
|
||||
{
|
||||
// Right is weak. Left was not weak, but it is
|
||||
// always rejecting. We can therefore pretend
|
||||
// that left is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
res->copy_acceptance_of(left);
|
||||
acc_cond::mark_t accmark = leftsatmark.second;
|
||||
auto& racc = right->acc();
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (!racc.accepting(mr))
|
||||
return ml;
|
||||
else
|
||||
return accmark;
|
||||
});
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
else // general case
|
||||
{
|
||||
auto left_num = left->num_sets();
|
||||
auto right_acc = right->get_acceptance() << left_num;
|
||||
if (and_acc)
|
||||
right_acc &= left->get_acceptance();
|
||||
else
|
||||
right_acc |= left->get_acceptance();
|
||||
res->set_acceptance(left_num + right->num_sets(), right_acc);
|
||||
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
return ml | (mr << left_num);
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
// The product of two non-deterministic automata could be
|
||||
// deterministic. Likewise for non-complete automata.
|
||||
|
|
@ -147,8 +314,7 @@ namespace spot
|
|||
unsigned left_state,
|
||||
unsigned right_state)
|
||||
{
|
||||
return product_aux(complete(left),
|
||||
complete(right),
|
||||
return product_aux(complete(left), complete(right),
|
||||
left_state, right_state, false);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
// -*- coding: utf-8 -*-
|
||||
// Copyright (C) 2014, 2015 Laboratoire de Recherche et
|
||||
// Copyright (C) 2014, 2015, 2018 Laboratoire de Recherche et
|
||||
// Développement de l'Epita (LRDE).
|
||||
//
|
||||
// This file is part of Spot, a model checking library.
|
||||
|
|
@ -36,7 +36,10 @@ namespace spot
|
|||
/// The resulting automaton will accept the intersection of both
|
||||
/// languages and have an acceptance condition that is the
|
||||
/// conjunction of the acceptance conditions of the two input
|
||||
/// automata.
|
||||
/// automata. In case one of the left or right automaton is weak,
|
||||
/// the acceptance condition of the result is made simpler: it
|
||||
/// usually is the acceptance condition of the other argument,
|
||||
/// therefore avoiding the need to introduce new accepting sets.
|
||||
///
|
||||
/// The algorithm also defines a named property called
|
||||
/// "product-states" with type spot::product_states. This stores
|
||||
|
|
@ -56,7 +59,10 @@ namespace spot
|
|||
/// languages recognized by each input automaton (with its initial
|
||||
/// state changed) and have an acceptance condition that is the
|
||||
/// conjunction of the acceptance conditions of the two input
|
||||
/// automata.
|
||||
/// automata. In case one of the left or right automaton is weak,
|
||||
/// the acceptance condition of the result is made simpler: it
|
||||
/// usually is the acceptance condition of the other argument,
|
||||
/// therefore avoiding the need to introduce new accepting sets.
|
||||
///
|
||||
/// The algorithm also defines a named property called
|
||||
/// "product-states" with type spot::product_states. This stores
|
||||
|
|
@ -74,7 +80,10 @@ namespace spot
|
|||
/// The resulting automaton will accept the union of both
|
||||
/// languages and have an acceptance condition that is the
|
||||
/// disjunction of the acceptance conditions of the two input
|
||||
/// automata.
|
||||
/// automata. In case one of the left or right automaton is weak,
|
||||
/// the acceptance condition of the result is made simpler: it
|
||||
/// usually is the acceptance condition of the other argument,
|
||||
/// therefore avoiding the need to introduce new accepting sets.
|
||||
///
|
||||
/// The algorithm also defines a named property called
|
||||
/// "product-states" with type spot::product_states. This stores
|
||||
|
|
@ -94,7 +103,10 @@ namespace spot
|
|||
/// recognized by each input automaton (with its initial state
|
||||
/// changed) and have an acceptance condition that is the
|
||||
/// disjunction of the acceptance conditions of the two input
|
||||
/// automata.
|
||||
/// automata. In case one of the left or right automaton is weak,
|
||||
/// the acceptance condition of the result is made simpler: it
|
||||
/// usually is the acceptance condition of the other argument,
|
||||
/// therefore avoiding the need to introduce new accepting sets.
|
||||
///
|
||||
/// The algorithm also defines a named property called
|
||||
/// "product-states" with type spot::product_states. This stores
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue