revamp the formula hierarchy (montro-patch)

Flatten the formula ltl::formula hiearchy into a single ltl::vnode that
has an enumerator to distinguish the types of node, and a common
interface to access children, update reference counts, etc.  The
ltl::formula class is now a thin wrapper around an ltl::vnode pointer to
keep track of reference counts automatically.  Visitor are not used
anymore; we now have map() and traversor() methods that are more
concise.

This basically fixes #43, but should be followed by some fine tuning
that should now be localized to the formula.hh and formula.cc files.

Some statistics about this patch.  I started working on it on Sep 9, had
a first compiling version two weeks later on Sep 22, and it then took 5
days to fixes the ~70 distincts bugs that were introduced during the
conversion.  About 13200 lines were modified, and one third of those
were removed.

* src/ltlast/formula.cc, src/ltlast/formula.hh: Complete rewrite,
including what was in separate nearby files.
* src/ltlast/allnodes.hh, src/ltlast/atomic_prop.cc,
src/ltlast/atomic_prop.hh, src/ltlast/binop.cc, src/ltlast/binop.hh,
src/ltlast/bunop.cc, src/ltlast/bunop.hh, src/ltlast/constant.cc,
src/ltlast/constant.hh, src/ltlast/multop.cc, src/ltlast/multop.hh,
src/ltlast/unop.cc, src/ltlast/unop.hh, src/ltlvisit/dump.cc,
src/ltlvisit/dump.hh, src/ltlast/predecl.hh: Delete these files.  Their
feature have been merged in formula.hh and formula.cc.
* src/ltlast/visitor.hh, src/ltlvisit/clone.cc, src/ltlvisit/clone.hh,
src/ltlvisit/dump.hh, src/ltlvisit/postfix.cc, src/ltlvisit/postfix.hh:
Delete these files, as we do not use visitors anymore.
* bench/stutter/stutter_invariance_formulas.cc,
bench/stutter/stutter_invariance_randomgraph.cc, doc/org/tut01.org,
doc/org/tut02.org, doc/org/tut10.org, doc/org/tut22.org,
iface/ltsmin/ltsmin.cc, iface/ltsmin/ltsmin.hh,
iface/ltsmin/modelcheck.cc, src/bin/autfilt.cc,
src/bin/common_aoutput.cc, src/bin/common_aoutput.hh,
src/bin/common_finput.cc, src/bin/common_finput.hh,
src/bin/common_output.cc, src/bin/common_output.hh,
src/bin/common_trans.cc, src/bin/common_trans.hh, src/bin/dstar2tgba.cc,
src/bin/genltl.cc, src/bin/ltl2tgba.cc, src/bin/ltl2tgta.cc,
src/bin/ltlcross.cc, src/bin/ltldo.cc, src/bin/ltlfilt.cc,
src/bin/ltlgrind.cc, src/bin/randaut.cc, src/bin/randltl.cc,
src/kripke/kripkeexplicit.cc, src/kripke/kripkeexplicit.hh,
src/kripkeparse/kripkeparse.yy, src/ltlast/Makefile.am,
src/ltlenv/declenv.cc, src/ltlenv/declenv.hh, src/ltlenv/defaultenv.cc,
src/ltlenv/defaultenv.hh, src/ltlenv/environment.hh,
src/ltlparse/ltlparse.yy, src/ltlparse/public.hh,
src/ltlvisit/Makefile.am, src/ltlvisit/apcollect.cc,
src/ltlvisit/apcollect.hh, src/ltlvisit/contain.cc,
src/ltlvisit/contain.hh, src/ltlvisit/dot.cc, src/ltlvisit/dot.hh,
src/ltlvisit/exclusive.cc, src/ltlvisit/exclusive.hh,
src/ltlvisit/length.cc, src/ltlvisit/length.hh, src/ltlvisit/mark.cc,
src/ltlvisit/mark.hh, src/ltlvisit/mutation.cc,
src/ltlvisit/mutation.hh, src/ltlvisit/nenoform.cc,
src/ltlvisit/nenoform.hh, src/ltlvisit/print.cc, src/ltlvisit/print.hh,
src/ltlvisit/randomltl.cc, src/ltlvisit/randomltl.hh,
src/ltlvisit/relabel.cc, src/ltlvisit/relabel.hh,
src/ltlvisit/remove_x.cc, src/ltlvisit/remove_x.hh,
src/ltlvisit/simpfg.cc, src/ltlvisit/simpfg.hh,
src/ltlvisit/simplify.cc, src/ltlvisit/simplify.hh, src/ltlvisit/snf.cc,
src/ltlvisit/snf.hh, src/ltlvisit/unabbrev.cc, src/ltlvisit/unabbrev.hh,
src/parseaut/parseaut.yy, src/ta/taexplicit.cc, src/ta/tgtaexplicit.cc,
src/taalgos/minimize.cc, src/taalgos/tgba2ta.cc, src/tests/bare.test,
src/tests/checkpsl.cc, src/tests/checkta.cc,
src/tests/complementation.cc, src/tests/consterm.cc,
src/tests/emptchk.cc, src/tests/equalsf.cc, src/tests/ikwiad.cc,
src/tests/isop.test, src/tests/kind.cc, src/tests/length.cc,
src/tests/ltldo.test, src/tests/ltlfilt.test, src/tests/ltlgrind.test,
src/tests/ltlprod.cc, src/tests/ltlrel.cc,
src/tests/parse_print_test.cc, src/tests/parseaut.test,
src/tests/parseerr.test, src/tests/randtgba.cc, src/tests/readltl.cc,
src/tests/reduc.cc, src/tests/syntimpl.cc, src/tests/taatgba.cc,
src/tests/tostring.cc, src/tests/twagraph.cc, src/tests/utf8.test,
src/twa/acc.cc, src/twa/bdddict.cc, src/twa/bdddict.hh,
src/twa/bddprint.cc, src/twa/formula2bdd.cc, src/twa/formula2bdd.hh,
src/twa/taatgba.cc, src/twa/taatgba.hh, src/twa/twa.cc, src/twa/twa.hh
src/twa/twagraph.cc, src/twa/twagraph.hh, src/twa/twasafracomplement.cc,
src/twaalgos/compsusp.cc, src/twaalgos/compsusp.hh,
src/twaalgos/dtgbasat.cc, src/twaalgos/hoa.cc, src/twaalgos/lbtt.cc,
src/twaalgos/ltl2taa.cc, src/twaalgos/ltl2taa.hh,
src/twaalgos/ltl2tgba_fm.cc, src/twaalgos/ltl2tgba_fm.hh,
src/twaalgos/minimize.cc, src/twaalgos/minimize.hh,
src/twaalgos/neverclaim.cc, src/twaalgos/postproc.cc,
src/twaalgos/postproc.hh, src/twaalgos/powerset.cc,
src/twaalgos/powerset.hh, src/twaalgos/randomgraph.cc,
src/twaalgos/remprop.cc, src/twaalgos/remprop.hh, src/twaalgos/stats.cc,
src/twaalgos/stats.hh, src/twaalgos/stutter.cc, src/twaalgos/stutter.hh,
src/twaalgos/translate.cc, src/twaalgos/translate.hh,
wrap/python/ajax/spotcgi.in, wrap/python/spot.py,
wrap/python/spot_impl.i, wrap/python/Makefile.am,
wrap/python/tests/automata-io.ipynb, wrap/python/tests/formulas.ipynb,
wrap/python/tests/ltl2tgba.py, wrap/python/tests/ltlparse.py,
wrap/python/tests/ltlsimple.py, wrap/python/tests/randltl.ipynb: Adjust
to use the new interface.
* src/sanity/style.test: Accept more C++11 patterns.
* NEWS: Mention the change.
This commit is contained in:
Alexandre Duret-Lutz 2015-09-24 19:44:00 +02:00
parent 1628b188fe
commit b77f7e24c3
177 changed files with 8295 additions and 13332 deletions

View file

@ -1,6 +1,6 @@
## -*- coding: utf-8 -*-
## Copyright (C) 2009, 2010, 2011, 2013, 2014 Laboratoire de Recherche
## et Développement de l'Epita (LRDE).
## Copyright (C) 2009, 2010, 2011, 2013, 2014, 2015 Laboratoire de
## Recherche et Développement de l'Epita (LRDE).
## Copyright (C) 2003 Laboratoire d'Informatique de Paris 6 (LIP6),
## département Systèmes Répartis Coopératifs (SRC), Université Pierre
## et Marie Curie.
@ -26,24 +26,7 @@ AM_CXXFLAGS = $(WARNING_CXXFLAGS)
ltlastdir = $(pkgincludedir)/ltlast
ltlast_HEADERS = \
allnodes.hh \
atomic_prop.hh \
binop.hh \
bunop.hh \
constant.hh \
formula.hh \
multop.hh \
predecl.hh \
unop.hh \
visitor.hh
ltlast_HEADERS = formula.hh
noinst_LTLIBRARIES = libltlast.la
libltlast_la_SOURCES = \
atomic_prop.cc \
binop.cc \
bunop.cc \
constant.cc \
formula.cc \
multop.cc \
unop.cc
libltlast_la_SOURCES = formula.cc

View file

@ -1,36 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2014 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/// \file ltlast/allnodes.hh
/// \brief Define all LTL node types.
///
/// This file is usually needed when \b defining a visitor.
/// Prefer ltlast/predecl.hh when only \b declaring methods and functions
/// over LTL nodes.
#pragma once
#include "binop.hh"
#include "unop.hh"
#include "multop.hh"
#include "atomic_prop.hh"
#include "constant.hh"
#include "bunop.hh"

View file

@ -1,129 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005 Laboratoire d'Informatique de
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include "atomic_prop.hh"
#include "visitor.hh"
#include "misc/bareword.hh"
#include <cstddef>
#include <cassert>
#include <ostream>
namespace spot
{
namespace ltl
{
atomic_prop::atomic_prop(const std::string& name, environment& env)
: formula(AtomicProp), name_(name), env_(&env)
{
is.boolean = true;
is.sugar_free_boolean = true;
is.in_nenoform = true;
is.syntactic_si = true; // Assuming LTL (for PSL a Boolean
// term is not stared will be regarded
// as not stuttering were this
// matters.)
is.sugar_free_ltl = true;
is.ltl_formula = true;
is.psl_formula = true;
is.sere_formula = true;
is.finite = true;
is.eventual = false;
is.universal = false;
is.syntactic_safety = true;
is.syntactic_guarantee = true;
is.syntactic_obligation = true;
is.syntactic_recurrence = true;
is.syntactic_persistence = true;
is.not_marked = true;
is.accepting_eword = false;
// is.lbt_atomic_props should be true if the name has the form
// pNN where NN is any number of digit.
std::string::const_iterator pos = name.begin();
bool lbtap = (pos != name.end() && *pos++ == 'p');
while (lbtap && pos != name.end())
{
char l = *pos++;
lbtap = (l >= '0' && l <= '9');
}
is.lbt_atomic_props = lbtap;
is.spin_atomic_props = lbtap || is_spin_ap(name.c_str());
}
atomic_prop::~atomic_prop()
{
// Get this instance out of the instance map.
size_t c = instances.erase(key(name(), &env()));
assert(c == 1);
(void) c; // For the NDEBUG case.
}
std::string
atomic_prop::dump() const
{
return "AP(" + name() + ")";
}
void
atomic_prop::accept(visitor& v) const
{
v.visit(this);
}
atomic_prop::map atomic_prop::instances;
const atomic_prop*
atomic_prop::instance(const std::string& name, environment& env)
{
const atomic_prop* ap;
auto ires = instances.emplace(key(name, &env), nullptr);
if (!ires.second)
{
ap = ires.first->second;
ap->clone();
}
else
{
ap = ires.first->second = new atomic_prop(name, env);
}
return ap;
}
unsigned
atomic_prop::instance_count()
{
return instances.size();
}
std::ostream&
atomic_prop::dump_instances(std::ostream& os)
{
for (const auto& i: instances)
os << i.second << " = " << 1 + i.second->refs_
<< " * atomic_prop(" << i.first.first << ", "
<< i.first.second->name() << ")\n";
return os;
}
}
}

View file

@ -1,92 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2012, 2013, 2014 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/// \file ltlast/atomic_prop.hh
/// \brief LTL atomic propositions
#pragma once
#include "formula.hh"
#include <string>
#include <iosfwd>
#include <map>
#include "ltlenv/environment.hh"
namespace spot
{
namespace ltl
{
/// \ingroup ltl_ast
/// \brief Atomic propositions.
class SPOT_API atomic_prop final : public formula
{
public:
/// Build an atomic proposition with name \a name in
/// environment \a env.
static const atomic_prop*
instance(const std::string& name, environment& env);
virtual void accept(visitor& visitor) const override;
/// Get the name of the atomic proposition.
const std::string& name() const
{
return name_;
}
/// Get the environment of the atomic proposition.
environment& env() const
{
return *env_;
}
/// Return a canonic representation of the atomic proposition
virtual std::string dump() const override;
/// Number of instantiated atomic propositions. For debugging.
static unsigned instance_count();
/// List all instances of atomic propositions. For debugging.
static std::ostream& dump_instances(std::ostream& os);
protected:
atomic_prop(const std::string& name, environment& env);
virtual ~atomic_prop();
typedef std::pair<std::string, environment*> key;
typedef std::map<key, const atomic_prop*> map;
static map instances;
private:
std::string name_;
environment* env_;
};
inline
const atomic_prop*
is_atomic_prop(const formula* f)
{
if (f->kind() != formula::AtomicProp)
return 0;
return static_cast<const atomic_prop*>(f);
}
}
}

View file

@ -1,538 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire
// de Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2005 Laboratoire d'Informatique de Paris
// 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include <cassert>
#include <cstddef>
#include <utility>
#include "binop.hh"
#include "unop.hh"
#include "multop.hh"
#include "constant.hh"
#include "visitor.hh"
#include <iostream>
namespace spot
{
namespace ltl
{
binop::binop(type op, const formula* first, const formula* second)
: formula(BinOp), op_(op), first_(first), second_(second)
{
// Beware: (f U g) is a pure eventuality if both operands
// are pure eventualities, unlike in the proceedings of
// Concur'00. (The revision of the paper available at
// http://www.bell-labs.com/project/TMP/ is fixed.) See
// also http://arxiv.org/abs/1011.4214v2 for a discussion
// about this problem. (Which we fixed in 2005 thanks
// to LBTT.)
// This means that we can use the following line to handle
// all cases of (f U g), (f R g), (f W g), (f M g) for
// universality and eventuality.
props = first->get_props() & second->get_props();
// The matter can be further refined because:
// (f U g) is a pure eventuality if
// g is a pure eventuality (regardless of f),
// or f == 1
// (g M f) is a pure eventuality if f and g are,
// or f == 1
// (g R f) is purely universal if
// f is purely universal (regardless of g)
// or g == 0
// (f W g) is purely universal if f and g are
// or g == 0
switch (op)
{
case Xor:
case Equiv:
is.eventual = false;
is.universal = false;
is.sere_formula = is.boolean;
is.sugar_free_boolean = false;
is.in_nenoform = false;
// is.syntactic_obligation inherited;
is.accepting_eword = false;
if (is.syntactic_obligation)
{
// Only formula that are in the intersection of
// guarantee and safety are closed by Xor and <=>.
bool sg = is.syntactic_safety && is.syntactic_guarantee;
is.syntactic_safety = sg;
is.syntactic_guarantee = sg;
assert(is.syntactic_recurrence == true);
assert(is.syntactic_persistence == true);
}
else
{
is.syntactic_safety = false;
is.syntactic_guarantee = false;
is.syntactic_recurrence = false;
is.syntactic_persistence = false;
}
break;
case Implies:
is.eventual = false;
is.universal = false;
is.sere_formula = is.boolean;
is.sugar_free_boolean = false;
is.in_nenoform = false;
is.syntactic_safety =
first->is_syntactic_guarantee() && second->is_syntactic_safety();
is.syntactic_guarantee =
first->is_syntactic_safety() && second->is_syntactic_guarantee();
// is.syntactic_obligation inherited
is.syntactic_persistence = first->is_syntactic_recurrence()
&& second->is_syntactic_persistence();
is.syntactic_recurrence = first->is_syntactic_persistence()
&& second->is_syntactic_recurrence();
is.accepting_eword = false;
break;
case EConcatMarked:
case EConcat:
is.not_marked = (op != EConcatMarked);
is.ltl_formula = false;
is.boolean = false;
is.sere_formula = false;
is.accepting_eword = false;
is.psl_formula = true;
is.syntactic_guarantee = second->is_syntactic_guarantee();
is.syntactic_persistence = second->is_syntactic_persistence();
if (first->is_finite())
{
is.syntactic_safety = second->is_syntactic_safety();
is.syntactic_obligation = second->is_syntactic_obligation();
is.syntactic_recurrence = second->is_syntactic_recurrence();
}
else
{
is.syntactic_safety = false;
is.syntactic_obligation = second->is_syntactic_guarantee();
is.syntactic_recurrence = second->is_syntactic_guarantee();
}
assert(first->is_sere_formula());
assert(second->is_psl_formula());
if (first->is_boolean())
is.syntactic_si = false;
break;
case UConcat:
is.not_marked = true;
is.ltl_formula = false;
is.boolean = false;
is.sere_formula = false;
is.accepting_eword = false;
is.psl_formula = true;
is.syntactic_safety = second->is_syntactic_safety();
is.syntactic_recurrence = second->is_syntactic_recurrence();
if (first->is_finite())
{
is.syntactic_guarantee = second->is_syntactic_guarantee();
is.syntactic_obligation = second->is_syntactic_obligation();
is.syntactic_persistence = second->is_syntactic_persistence();
}
else
{
is.syntactic_guarantee = false;
is.syntactic_obligation = second->is_syntactic_safety();
is.syntactic_persistence = second->is_syntactic_safety();
}
assert(first->is_sere_formula());
assert(second->is_psl_formula());
if (first->is_boolean())
is.syntactic_si = false;
break;
case U:
is.not_marked = true;
// f U g is universal if g is eventual, or if f == 1.
is.eventual = second->is_eventual();
is.eventual |= (first == constant::true_instance());
is.boolean = false;
is.sere_formula = false;
is.finite = false;
is.accepting_eword = false;
is.syntactic_safety = false;
// is.syntactic_guarantee = Guarantee U Guarantee
is.syntactic_obligation = // Obligation U Guarantee
first->is_syntactic_obligation()
&& second->is_syntactic_guarantee();
is.syntactic_recurrence = // Recurrence U Guarantee
first->is_syntactic_recurrence()
&& second->is_syntactic_guarantee();
// is.syntactic_persistence = Persistence U Persistance
break;
case W:
is.not_marked = true;
// f W g is universal if f and g are, or if g == 0.
is.universal |= (second == constant::false_instance());
is.boolean = false;
is.sere_formula = false;
is.finite = false;
is.accepting_eword = false;
// is.syntactic_safety = Safety W Safety;
is.syntactic_guarantee = false;
is.syntactic_obligation = // Safety W Obligation
first->is_syntactic_safety() && second->is_syntactic_obligation();
// is.syntactic_recurrence = Recurrence W Recurrence
is.syntactic_persistence = // Safety W Persistance
first->is_syntactic_safety()
&& second->is_syntactic_persistence();
break;
case R:
is.not_marked = true;
// g R f is universal if f is universal, or if g == 0.
is.universal = second->is_universal();
is.universal |= (first == constant::false_instance());
is.boolean = false;
is.sere_formula = false;
is.finite = false;
is.accepting_eword = false;
// is.syntactic_safety = Safety R Safety;
is.syntactic_guarantee = false;
is.syntactic_obligation = // Obligation R Safety
first->is_syntactic_obligation() && second->is_syntactic_safety();
//is.syntactic_recurrence = Recurrence R Recurrence
is.syntactic_persistence = // Persistence R Safety
first->is_syntactic_persistence()
&& second->is_syntactic_safety();
break;
case M:
is.not_marked = true;
// g M f is eventual if both g and f are eventual, or if f == 1.
is.eventual |= (second == constant::true_instance());
is.boolean = false;
is.sere_formula = false;
is.finite = false;
is.accepting_eword = false;
is.syntactic_safety = false;
// is.syntactic_guarantee = Guarantee M Guarantee
is.syntactic_obligation = // Guarantee M Obligation
first->is_syntactic_guarantee()
&& second->is_syntactic_obligation();
is.syntactic_recurrence = // Guarantee M Recurrence
first->is_syntactic_guarantee()
&& second->is_syntactic_recurrence();
// is.syntactic_persistence = Persistence M Persistance
break;
}
assert((!is.syntactic_obligation) ||
(is.syntactic_persistence && is.syntactic_recurrence));
}
binop::~binop()
{
// Get this instance out of the instance map.
size_t c = instances.erase(key(op(), first(), second()));
assert(c == 1);
(void) c; // For the NDEBUG case.
// Dereference children.
first()->destroy();
second()->destroy();
}
std::string
binop::dump() const
{
return (std::string("binop(") + op_name()
+ ", " + first()->dump()
+ ", " + second()->dump() + ")");
}
void
binop::accept(visitor& v) const
{
v.visit(this);
}
const char*
binop::op_name() const
{
switch (op_)
{
case Xor:
return "Xor";
case Implies:
return "Implies";
case Equiv:
return "Equiv";
case U:
return "U";
case R:
return "R";
case W:
return "W";
case M:
return "M";
case EConcat:
return "EConcat";
case EConcatMarked:
return "EConcatMarked";
case UConcat:
return "UConcat";
}
SPOT_UNREACHABLE();
}
binop::map binop::instances;
const formula*
binop::instance(type op, const formula* first, const formula* second)
{
// Sort the operands of commutative operators, so that for
// example the formula instance for 'a xor b' is the same as
// that for 'b xor a'.
// Trivial identities:
switch (op)
{
case Xor:
{
// Xor is commutative: sort operands.
formula_ptr_less_than_bool_first cmp;
if (cmp(second, first))
std::swap(second, first);
}
// - (1 ^ Exp) = !Exp
// - (0 ^ Exp) = Exp
if (first == constant::true_instance())
return unop::instance(unop::Not, second);
if (first == constant::false_instance())
return second;
if (first == second)
{
first->destroy();
second->destroy();
return constant::false_instance();
}
// We expect constants to appear first, because they are
// instantiated first.
assert(second != constant::false_instance());
assert(second != constant::true_instance());
break;
case Equiv:
{
// Equiv is commutative: sort operands.
formula_ptr_less_than_bool_first cmp;
if (cmp(second, first))
std::swap(second, first);
}
// - (0 <=> Exp) = !Exp
// - (1 <=> Exp) = Exp
// - (Exp <=> Exp) = 1
if (first == constant::false_instance())
return unop::instance(unop::Not, second);
if (first == constant::true_instance())
return second;
if (first == second)
{
first->destroy();
second->destroy();
return constant::true_instance();
}
// We expect constants to appear first, because they are
// instantiated first.
assert(second != constant::false_instance());
assert(second != constant::true_instance());
break;
case Implies:
// - (1 => Exp) = Exp
// - (0 => Exp) = 1
// - (Exp => 1) = 1
// - (Exp => 0) = !Exp
// - (Exp => Exp) = 1
if (first == constant::true_instance())
return second;
if (first == constant::false_instance())
{
second->destroy();
return constant::true_instance();
}
if (second == constant::true_instance())
{
first->destroy();
return second;
}
if (second == constant::false_instance())
return unop::instance(unop::Not, first);
if (first == second)
{
first->destroy();
second->destroy();
return constant::true_instance();
}
break;
case U:
// - (Exp U 1) = 1
// - (Exp U 0) = 0
// - (0 U Exp) = Exp
// - (Exp U Exp) = Exp
if (second == constant::true_instance()
|| second == constant::false_instance()
|| first == constant::false_instance()
|| first == second)
{
first->destroy();
return second;
}
break;
case W:
// - (Exp W 1) = 1
// - (0 W Exp) = Exp
// - (1 W Exp) = 1
// - (Exp W Exp) = Exp
if (second == constant::true_instance()
|| first == constant::false_instance()
|| first == second)
{
first->destroy();
return second;
}
if (first == constant::true_instance())
{
second->destroy();
return first;
}
break;
case R:
// - (Exp R 1) = 1
// - (Exp R 0) = 0
// - (1 R Exp) = Exp
// - (Exp R Exp) = Exp
if (second == constant::true_instance()
|| second == constant::false_instance()
|| first == constant::true_instance()
|| first == second)
{
first->destroy();
return second;
}
break;
case M:
// - (Exp M 0) = 0
// - (1 M Exp) = Exp
// - (0 M Exp) = 0
// - (Exp M Exp) = Exp
if (second == constant::false_instance()
|| first == constant::true_instance()
|| first == second)
{
first->destroy();
return second;
}
if (first == constant::false_instance())
{
second->destroy();
return first;
}
break;
case EConcat:
case EConcatMarked:
// - 0 <>-> Exp = 0
// - 1 <>-> Exp = Exp
// - [*0] <>-> Exp = 0
// - Exp <>-> 0 = 0
// - boolExp <>-> Exp = boolExp & Exp
if (first == constant::true_instance())
return second;
if (first == constant::false_instance()
|| first == constant::empty_word_instance())
{
second->destroy();
return constant::false_instance();
}
if (second == constant::false_instance())
{
first->destroy();
return second;
}
if (first->is_boolean())
return multop::instance(multop::And, first, second);
break;
case UConcat:
// - 0 []-> Exp = 1
// - 1 []-> Exp = Exp
// - [*0] []-> Exp = 1
// - Exp []-> 1 = 1
// - boolExp []-> Exp = !boolExp | Exp
if (first == constant::true_instance())
return second;
if (first == constant::false_instance()
|| first == constant::empty_word_instance())
{
second->destroy();
return constant::true_instance();
}
if (second == constant::true_instance())
{
first->destroy();
return second;
}
if (first->is_boolean())
return multop::instance(multop::Or,
unop::instance(unop::Not, first), second);
break;
}
const formula* res;
auto ires = instances.emplace(key(op, first, second), nullptr);
if (!ires.second)
{
// This instance already exists.
first->destroy();
second->destroy();
res = ires.first->second->clone();
}
else
{
res = ires.first->second = new binop(op, first, second);
}
return res;
}
unsigned
binop::instance_count()
{
return instances.size();
}
std::ostream&
binop::dump_instances(std::ostream& os)
{
for (const auto& i: instances)
os << i.second << " = "
<< 1 + i.second->refs_ << " * "
<< i.second->dump() << '\n';
return os;
}
}
}

View file

@ -1,239 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris
// 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/// \file ltlast/binop.hh
/// \brief LTL binary operators
///
/// This does not include \c AND and \c OR operators. These are
/// considered to be multi-operand operators (see spot::ltl::multop).
#pragma once
#include "formula.hh"
#include <map>
#include <iosfwd>
#include <tuple>
namespace spot
{
namespace ltl
{
/// \ingroup ltl_ast
/// \brief Binary operator.
class SPOT_API binop final: public formula
{
public:
/// Different kinds of binary opertaors
///
/// And and Or are not here. Because they
/// are often nested we represent them as multops.
enum type { Xor,
Implies,
Equiv,
U, ///< until
R, ///< release (dual of until)
W, ///< weak until
M, ///< strong release (dual of weak until)
EConcat, ///< Existential Concatenation
EConcatMarked, ///< Existential Concatenation, Marked
UConcat ///< Universal Concatenation
};
/// \brief Build a unary operator with operation \a op and
/// children \a first and \a second.
///
/// Some reordering will be performed on arguments of commutative
/// operators (Xor and Equiv) to ensure that for instance (a <=> b)
/// is the same formula as (b <=> a).
///
/// Furthermore, the following trivial simplifications are
/// performed (the left formula is rewritten as the right
/// formula):
/// - (1 => Exp) = Exp
/// - (0 => Exp) = 1
/// - (Exp => 1) = 1
/// - (Exp => 0) = !Exp
/// - (Exp => Exp) = 1
/// - (1 ^ Exp) = !Exp
/// - (0 ^ Exp) = Exp
/// - (Exp ^ Exp) = 0
/// - (0 <=> Exp) = !Exp
/// - (1 <=> Exp) = Exp
/// - (Exp <=> Exp) = Exp
/// - (Exp U 1) = 1
/// - (Exp U 0) = 0
/// - (0 U Exp) = Exp
/// - (Exp U Exp) = Exp
/// - (Exp W 1) = 1
/// - (0 W Exp) = Exp
/// - (1 W Exp) = 1
/// - (Exp W Exp) = Exp
/// - (Exp R 1) = 1
/// - (Exp R 0) = 0
/// - (1 R Exp) = Exp
/// - (Exp R Exp) = Exp
/// - (Exp M 0) = 0
/// - (1 M Exp) = Exp
/// - (0 M Exp) = 0
/// - (Exp M Exp) = Exp
/// - 0 <>-> Exp = 0
/// - 1 <>-> Exp = Exp
/// - [*0] <>-> Exp = 0
/// - Exp <>-> 0 = 0
/// - boolExp <>-> Exp = boolExp & Exp
/// - 0 []-> Exp = 1
/// - 1 []-> Exp = Exp
/// - [*0] []-> Exp = 1
/// - Exp []-> 1 = 1
/// - boolExp <>-> Exp = !boolExp | Exp
static const formula* instance(type op,
const formula* first,
const formula* second);
virtual void accept(visitor& v) const override;
/// Get the first operand.
const formula* first() const
{
return first_;
}
/// Get the second operand.
const formula* second() const
{
return second_;
}
/// Get the type of this operator.
type op() const
{
return op_;
}
/// Get the type of this operator, as a string.
const char* op_name() const;
/// Return a canonic representation of the atomic proposition
virtual std::string dump() const override;
/// Number of instantiated binary operators. For debugging.
static unsigned instance_count();
/// Dump all instances. For debugging.
static std::ostream& dump_instances(std::ostream& os);
protected:
typedef std::tuple<type, const formula*, const formula*> key;
typedef std::map<key, const binop*> map;
static map instances;
binop(type op, const formula* first, const formula* second);
virtual ~binop();
private:
type op_;
const formula* first_;
const formula* second_;
};
/// \brief Cast \a f into a binop
///
/// Cast \a f into a binop iff it is a binop instance. Return 0
/// otherwise. This is faster than \c dynamic_cast.
inline
const binop*
is_binop(const formula* f)
{
if (f->kind() != formula::BinOp)
return 0;
return static_cast<const binop*>(f);
}
/// \brief Cast \a f into a binop if it has type \a op.
///
/// Cast \a f into a binop iff it is a unop instance with operator \a op.
/// Returns 0 otherwise.
inline
const binop*
is_binop(const formula* f, binop::type op)
{
if (const binop* bo = is_binop(f))
if (bo->op() == op)
return bo;
return 0;
}
/// \brief Cast \a f into a binop if it has type \a op1 or \a op2.
///
/// Cast \a f into a binop iff it is a unop instance with operator \a op1 or
/// \a op2. Returns 0 otherwise.
inline
const binop*
is_binop(const formula* f, binop::type op1, binop::type op2)
{
if (const binop* bo = is_binop(f))
if (bo->op() == op1 || bo->op() == op2)
return bo;
return 0;
}
/// \brief Cast \a f into a binop if it is a U.
///
/// Return 0 otherwise.
inline
const binop*
is_U(const formula* f)
{
return is_binop(f, binop::U);
}
/// \brief Cast \a f into a binop if it is a M.
///
/// Return 0 otherwise.
inline
const binop*
is_M(const formula* f)
{
return is_binop(f, binop::M);
}
/// \brief Cast \a f into a binop if it is a R.
///
/// Return 0 otherwise.
inline
const binop*
is_R(const formula* f)
{
return is_binop(f, binop::R);
}
/// \brief Cast \a f into a binop if it is a W.
///
/// Return 0 otherwise.
inline
const binop*
is_W(const formula* f)
{
return is_binop(f, binop::W);
}
}
}

View file

@ -1,350 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include "bunop.hh"
#include "visitor.hh"
#include <cassert>
#include <iostream>
#include <sstream>
#include "constant.hh"
#include "unop.hh"
#include "multop.hh"
namespace spot
{
namespace ltl
{
// Can't build it on startup, because it uses
// constant::true_instance that may not have been built yet...
const formula* bunop::one_star_ = 0;
bunop::bunop(type op, const formula* child, unsigned min, unsigned max)
: formula(BUnOp), op_(op), child_(child), min_(min), max_(max)
{
props = child->get_props();
assert(is.sere_formula);
is.boolean = false;
is.ltl_formula = false;
is.psl_formula = false;
is.eventual = false;
is.universal = false;
is.syntactic_safety = false;
is.syntactic_guarantee = false;
is.syntactic_obligation = false;
is.syntactic_recurrence = false;
is.syntactic_persistence = false;
switch (op_)
{
case Star:
if (max_ == unbounded)
{
is.finite = false;
is.syntactic_si = min_ == 1 && child->is_boolean();
}
else
{
is.syntactic_si = false;
}
if (min_ == 0)
is.accepting_eword = true;
break;
case FStar:
is.accepting_eword = false;
is.syntactic_si &= !child->is_boolean();
if (max_ == unbounded)
is.finite = false;
if (min_ == 0)
is.syntactic_si = false;
break;
}
}
bunop::~bunop()
{
// one_star_ should never get deleted. Otherwise, that means it
// has been destroyed too much, or not cloned enough.
assert(this != one_star_);
// Get this instance out of the instance map.
size_t c = instances.erase(key(op(), child(), min_, max_));
assert(c == 1);
(void) c; // For the NDEBUG case.
// Dereference child.
child()->destroy();
}
std::string
bunop::dump() const
{
std::ostringstream out;
out << "bunop(" << op_name() << ", "
<< child()->dump() << ", " << min_ << ", ";
if (max_ == unbounded)
out << "unbounded";
else
out << max_;
out << ')';
return out.str();
}
void
bunop::accept(visitor& v) const
{
v.visit(this);
}
const char*
bunop::op_name() const
{
switch (op_)
{
case Star:
return "Star";
case FStar:
return "FStar";
}
SPOT_UNREACHABLE();
}
std::string
bunop::format() const
{
std::ostringstream out;
switch (op_)
{
case Star:
// Syntactic sugaring
if (min_ == 1 && max_ == unbounded)
return "[+]";
out << "[*";
break;
case FStar:
// Syntactic sugaring
if (min_ == 1 && max_ == unbounded)
return "[:+]";
out << "[:*";
break;
}
if (min_ != 0 || max_ != unbounded)
{
// Always print the min_, even when it is equal to 0, this
// way we avoid ambiguities (like when reading
// a[*..3];b[->..2] which actually means a[*0..3];b[->1..2].
out << min_;
if (min_ != max_)
{
out << "..";
if (max_ != unbounded)
out << max_;
}
}
out << ']';
return out.str();
}
bunop::map bunop::instances;
const formula*
bunop::instance(type op, const formula* child,
unsigned min, unsigned max)
{
assert(min <= max);
const formula* neutral = nullptr;
switch (op)
{
case Star:
neutral = constant::empty_word_instance();
break;
case FStar:
neutral = constant::true_instance();
break;
}
// common trivial simplifications
// - [*0][*min..max] = [*0]
// - [*0][:*0..max] = 1
// - [*0][:*min..max] = 0 if min > 0
if (child == constant::empty_word_instance())
switch (op)
{
case Star:
return neutral;
case FStar:
if (min == 0)
return neutral;
else
return constant::false_instance();
}
// - 0[*0..max] = [*0]
// - 0[*min..max] = 0 if min > 0
// - b[:*0..max] = 1
// - b[:*min..max] = 0 if min > 0
if (child == constant::false_instance()
|| (op == FStar && child->is_boolean()))
{
if (min == 0)
{
child->destroy();
return neutral;
}
return child;
}
// - Exp[*0] = [*0]
// - Exp[:*0] = 1
if (max == 0)
{
child->destroy();
return neutral;
}
// - Exp[*1] = Exp
// - Exp[:*1] = Exp if Exp does not accept [*0]
if (min == 1 && max == 1)
if (op == Star || !child->accepts_eword())
return child;
// - Exp[*i..j][*k..l] = Exp[*ik..jl] if i*(k+1)<=jk+1.
// - Exp[:*i..j][:*k..l] = Exp[:*ik..jl] if i*(k+1)<=jk+1.
if (const bunop* s = is_bunop(child, op))
{
unsigned i = s->min();
unsigned j = s->max();
// Exp has to be true between i*min and j*min
// then between i*(min+1) and j*(min+1)
// ...
// finally between i*max and j*max
//
// We can merge these intervals into [i*min..j*max] iff the
// first are adjacent or overlap, i.e. iff
// i*(min+1) <= j*min+1.
// (Because i<=j, this entails that the other intervals also
// overlap).
const formula* exp = s->child();
if (j == unbounded)
{
min *= i;
max = unbounded;
// Exp[*min..max]
exp->clone();
child->destroy();
child = exp;
}
else
{
if (i * (min + 1) <= (j * min) + 1)
{
min *= i;
if (max != unbounded)
{
if (j == unbounded)
max = unbounded;
else
max *= j;
}
exp->clone();
child->destroy();
child = exp;
}
}
}
const formula* res;
auto ires = instances.emplace(key(op, child, min, max), nullptr);
if (!ires.second)
{
// This instance already exists.
child->destroy();
res = ires.first->second->clone();
}
else
{
res = ires.first->second = new bunop(op, child, min, max);
}
return res;
}
const formula*
bunop::sugar_goto(const formula* b, unsigned min, unsigned max)
{
assert(b->is_boolean());
// b[->min..max] is implemented as ((!b)[*];b)[*min..max]
const formula* s =
bunop::instance(bunop::Star,
unop::instance(unop::Not, b->clone()));
return bunop::instance(bunop::Star,
multop::instance(multop::Concat, s, b),
min, max);
}
const formula*
bunop::sugar_equal(const formula* b, unsigned min, unsigned max)
{
assert(b->is_boolean());
// b[=0..] = 1[*]
if (min == 0 && max == unbounded)
{
b->destroy();
return instance(Star, constant::true_instance());
}
// b[=min..max] is implemented as ((!b)[*];b)[*min..max];(!b)[*]
const formula* s =
bunop::instance(bunop::Star,
unop::instance(unop::Not, b->clone()));
const formula* t =
bunop::instance(bunop::Star,
multop::instance(multop::Concat,
s->clone(), b), min, max);
return multop::instance(multop::Concat, t, s);
}
unsigned
bunop::instance_count()
{
// Don't count one_star_ since it should not be destroyed.
return instances.size() - !!one_star_;
}
std::ostream&
bunop::dump_instances(std::ostream& os)
{
for (const auto& i: instances)
os << i.second << " = "
<< 1 + i.second->refs_ << " * "
<< i.second->dump()
<< '\n';
return os;
}
}
}

View file

@ -1,216 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire de Recherche
// et Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/// \file ltlast/bunop.hh
/// \brief Bounded Unary operators
#pragma once
#include "formula.hh"
#include <map>
#include <iosfwd>
#include <tuple>
#include "constant.hh"
namespace spot
{
namespace ltl
{
/// \ingroup ltl_ast
/// \brief Bounded unary operator.
class SPOT_API bunop final : public formula
{
public:
enum type { Star, FStar };
static const unsigned unbounded = -1U;
/// \brief Build a bunop with bounds \a min and \a max.
///
/// The following trivial simplifications are performed
/// automatically (the left expression is rewritten as the right
/// expression):
/// - 0[*0..max] = [*0]
/// - 0[*min..max] = 0 if min > 0
/// - [*0][*min..max] = [*0]
/// - Exp[*i..j][*k..l] = Exp[*ik..jl] if i*(k+1)<=jk+1.
/// - Exp[*0] = [*0]
/// - Exp[*1] = Exp
/// - b[:*0..max] = 1
/// - b[:*min..max] = b if min > 0
/// - [*0][:*0..max] = 1
/// - [*0][:*min..max] = 0 if min > 0
/// - Exp[:*i..j][:*k..l] = Exp[:*ik..jl] if i*(k+1)<=jk+1.
/// - Exp[:*0] = 1
/// - Exp[:*1] = Exp if Exp does not accept [*0]
///
/// These rewriting rules imply that it is not possible to build
/// an LTL formula object that is SYNTACTICALLY equal to one of
/// these left expressions.
static const formula* instance(type op,
const formula* child,
unsigned min = 0,
unsigned max = unbounded);
/// \brief Implement <code>b[->i..j]</code> using the Kleen star.
///
/// <code>b[->i..j]</code> is implemented as
/// <code>((!b)[*];b)[*i..j]</code>.
///
/// Note that \a min defaults to 1, not 0, because [->] means
/// [->1..].
///
/// \pre \a child must be a Boolean formula.
static const formula* sugar_goto(const formula* child,
unsigned min = 1,
unsigned max = unbounded);
/// \brief Implement b[=i..j] using the Kleen star.
///
/// <code>b[=i..j]</code> is implemented as
/// <code>((!b)[*];b)[*i..j];(!b)[*]</code>.
///
/// \pre \a child must be a Boolean formula.
static const formula* sugar_equal(const formula* child,
unsigned min = 0,
unsigned max = unbounded);
virtual void accept(visitor& v) const override;
/// Get the sole operand of this operator.
const formula* child() const
{
return child_;
}
/// Minimum number of repetition.
unsigned min() const
{
return min_;
}
/// Minimum number of repetition.
unsigned max() const
{
return max_;
}
/// \brief A string representation of the operator.
///
/// For instance "[*2..]".
std::string format() const;
/// Get the type of this operator.
type op() const
{
return op_;
}
/// Get the type of this operator, as a string.
const char* op_name() const;
/// Return a canonic representation of operation.
virtual std::string dump() const override;
/// Number of instantiated unary operators. For debugging.
static unsigned instance_count();
/// Dump all instances. For debugging.
static std::ostream& dump_instances(std::ostream& os);
/// \brief Return a formula for <code>1[*]</code>.
///
/// A global instance is returned, and it should not be
/// destroyed. Remember to clone it if you use it to build a
/// formula.
static const formula* one_star()
{
if (!one_star_)
one_star_ = instance(Star, constant::true_instance());
return one_star_;
}
protected:
typedef std::tuple<type, const formula*, unsigned, unsigned> key;
typedef std::map<key, const bunop*> map;
static map instances;
bunop(type op, const formula* child, unsigned min, unsigned max);
virtual ~bunop();
private:
type op_;
const formula* child_;
unsigned min_;
unsigned max_;
static const formula* one_star_;
};
/// \brief Cast \a f into a bunop.
///
/// Cast \a f into a bunop iff it is a bunop instance. Return 0
/// otherwise. This is faster than \c dynamic_cast.
inline
const bunop*
is_bunop(const formula* f)
{
if (f->kind() != formula::BUnOp)
return 0;
return static_cast<const bunop*>(f);
}
/// \brief Cast \a f into a bunop if it has type \a op.
///
/// Cast \a f into a bunop iff it is a bunop instance with operator \a op.
/// Returns 0 otherwise.
inline
const bunop*
is_bunop(const formula* f, bunop::type op)
{
if (const bunop* bo = is_bunop(f))
if (bo->op() == op)
return bo;
return 0;
}
/// \brief Cast \a f into a bunop if it is a Star.
///
/// Return 0 otherwise.
inline
const bunop*
is_Star(const formula* f)
{
return is_bunop(f, bunop::Star);
}
/// \brief Cast \a f into a bunop if it is a Star[0..].
///
/// Return 0 otherwise.
inline
const bunop*
is_KleenStar(const formula* f)
{
if (const bunop* b = is_Star(f))
if (b->min() == 0 && b->max() == bunop::unbounded)
return b;
return 0;
}
}
}

View file

@ -1,129 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire
// de Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2005 Laboratoire d'Informatique de Paris
// 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include "constant.hh"
#include "visitor.hh"
#include <cassert>
namespace spot
{
namespace ltl
{
constant constant::true_instance_(constant::True);
constant constant::false_instance_(constant::False);
constant constant::empty_word_instance_(constant::EmptyWord);
constant::constant(type val)
: formula(Constant), val_(val)
{
switch (val)
{
case constant::True:
case constant::False:
is.boolean = true;
is.sugar_free_boolean = true;
is.in_nenoform = true;
is.syntactic_si = true; // for LTL (not PSL)
is.sugar_free_ltl = true;
is.ltl_formula = true;
is.psl_formula = true;
is.sere_formula = true;
is.finite = true;
is.eventual = true;
is.universal = true;
is.syntactic_safety = true;
is.syntactic_guarantee = true;
is.syntactic_obligation = true;
is.syntactic_recurrence = true;
is.syntactic_persistence = true;
is.not_marked = true;
is.accepting_eword = false;
is.lbt_atomic_props = true;
is.spin_atomic_props = true;
break;
case constant::EmptyWord:
is.boolean = false;
is.sugar_free_boolean = false;
is.in_nenoform = true;
is.syntactic_si = true;
is.sugar_free_ltl = true;
is.ltl_formula = false;
is.psl_formula = false;
is.sere_formula = true;
is.finite = true;
is.eventual = false;
is.syntactic_safety = false;
is.syntactic_guarantee = false;
is.syntactic_obligation = false;
is.syntactic_recurrence = false;
is.syntactic_persistence = false;
is.universal = false;
is.not_marked = true;
is.accepting_eword = true;
is.lbt_atomic_props = true;
is.spin_atomic_props = true;
break;
}
}
constant::~constant()
{
}
std::string
constant::dump() const
{
switch (val())
{
case True:
return "constant(1)";
case False:
return "constant(0)";
case EmptyWord:
return "constant(e)";
}
SPOT_UNREACHABLE();
}
void
constant::accept(visitor& v) const
{
v.visit(this);
}
const char*
constant::val_name() const
{
switch (val_)
{
case True:
return "1";
case False:
return "0";
case EmptyWord:
return "[*0]";
}
SPOT_UNREACHABLE();
}
}
}

View file

@ -1,86 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2012, 2013, 2014 Laboratoire de Recherche
// et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/// \file ltlast/constant.hh
/// \brief LTL constants
#pragma once
#include "formula.hh"
namespace spot
{
namespace ltl
{
/// \ingroup ltl_ast
/// \brief A constant (True or False)
class SPOT_API constant final : public formula
{
public:
enum type { False, True, EmptyWord };
virtual void accept(visitor& v) const override;
/// Return the value of the constant.
type val() const
{
return val_;
}
/// Return the value of the constant as a string.
const char* val_name() const;
virtual std::string dump() const override;
/// Get the sole instance of spot::ltl::constant::constant(True).
static constant* true_instance() { return &true_instance_; }
/// Get the sole instance of spot::ltl::constant::constant(False).
static constant* false_instance() { return &false_instance_; }
/// Get the sole instance of spot::ltl::constant::constant(EmptyWord).
static constant* empty_word_instance() { return &empty_word_instance_; }
protected:
constant(type val);
virtual ~constant();
private:
type val_;
static constant true_instance_;
static constant false_instance_;
static constant empty_word_instance_;
// If you add new constants here, be sure to update the
// formula::formula() constructor.
};
/// \brief Cast \a f into a constant.
///
/// Cast \a f into a constant iff it is a constant instance.
/// Return 0 otherwise. This is faster than \c dynamic_cast.
inline
const constant*
is_constant(const formula* f)
{
if (f->kind() != formula::Constant)
return 0;
return static_cast<const constant*>(f);
}
}
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,699 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005 Laboratoire d'Informatique de
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include <cstddef>
#include <cassert>
#include <utility>
#include <algorithm>
#include <iostream>
#include "multop.hh"
#include "constant.hh"
#include "bunop.hh"
#include "visitor.hh"
namespace spot
{
namespace ltl
{
multop::multop(type op, vec* v)
: formula(MultOp), op_(op), children_(v)
{
unsigned s = v->size();
assert(s > 1);
props = (*v)[0]->get_props();
switch (op)
{
case Fusion:
is.accepting_eword = false;
case Concat:
case AndNLM:
case AndRat:
{
bool syntactic_si = is.syntactic_si && !is.boolean;
// Note: AndNLM(p1,p2) and AndRat(p1,p2) are Boolean
// formulae, but they are actually rewritten as And(p1,p2)
// by trivial identities before this constructor is called.
// So at this point, AndNLM/AndRat are always used with at
// most one Boolean argument, and the result is therefore
// NOT Boolean.
is.boolean = false;
is.ltl_formula = false;
is.psl_formula = false;
is.eventual = false;
is.universal = false;
for (unsigned i = 1; i < s; ++i)
{
syntactic_si &= (*v)[i]->is_syntactic_stutter_invariant()
&& !(*v)[i]->is_boolean();
props &= (*v)[i]->get_props();
}
is.syntactic_si = syntactic_si;
break;
}
case And:
for (unsigned i = 1; i < s; ++i)
props &= (*v)[i]->get_props();
break;
case OrRat:
{
bool syntactic_si = is.syntactic_si && !is.boolean;
// Note: OrRat(p1,p2) is a Boolean formula, but its is
// actually rewritten as Or(p1,p2) by trivial identities
// before this constructor is called. So at this point,
// AndNLM is always used with at most one Boolean argument,
// and the result is therefore NOT Boolean.
is.boolean = false;
is.ltl_formula = false;
is.psl_formula = false;
is.eventual = false;
is.universal = false;
bool ew = (*v)[0]->accepts_eword();
for (unsigned i = 1; i < s; ++i)
{
ew |= (*v)[i]->accepts_eword();
syntactic_si &= (*v)[i]->is_syntactic_stutter_invariant()
&& !(*v)[i]->is_boolean();
props &= (*v)[i]->get_props();
}
is.accepting_eword = ew;
is.syntactic_si = syntactic_si;
break;
}
case Or:
{
bool ew = (*v)[0]->accepts_eword();
for (unsigned i = 1; i < s; ++i)
{
ew |= (*v)[i]->accepts_eword();
props &= (*v)[i]->get_props();
}
is.accepting_eword = ew;
break;
}
}
// A concatenation is an siSERE if it contains one stared
// Boolean, and the other operands are siSERE (i.e.,
// sub-formulas that verify is_syntactic_stutter_invariant() and
// !is_boolean());
if (op == Concat)
{
unsigned sb = 0; // stared Boolean formulas seen
for (unsigned i = 0; i < s; ++i)
{
if ((*v)[i]->is_syntactic_stutter_invariant()
&& !(*v)[i]->is_boolean())
continue;
if (const bunop* b = is_Star((*v)[i]))
{
sb += b->child()->is_boolean();
if (sb > 1)
break;
}
else
{
sb = 0;
break;
}
}
is.syntactic_si = sb == 1;
}
}
multop::~multop()
{
// Get this instance out of the instance map.
size_t c = instances.erase(key(op(), children_));
assert(c == 1);
(void) c; // For the NDEBUG case.
// Dereference children.
unsigned s = size();
for (unsigned n = 0; n < s; ++n)
nth(n)->destroy();
delete children_;
}
std::string
multop::dump() const
{
std::string r = "multop(";
r += op_name();
unsigned max = size();
for (unsigned n = 0; n < max; ++n)
r += ", " + nth(n)->dump();
r += ")";
return r;
}
void
multop::accept(visitor& v) const
{
v.visit(this);
}
const formula*
multop::all_but(unsigned n) const
{
unsigned s = size();
vec* v = new vec;
v->reserve(s - 1);
for (unsigned pos = 0; pos < n; ++pos)
v->push_back(nth(pos)->clone());
for (unsigned pos = n + 1; pos < s; ++pos)
v->push_back(nth(pos)->clone());
return instance(op_, v);
}
unsigned
multop::boolean_count() const
{
unsigned pos = 0;
unsigned s = size();
while (pos < s && nth(pos)->is_boolean())
++pos;
return pos;
}
const formula*
multop::boolean_operands(unsigned* width) const
{
unsigned s = boolean_count();
if (width)
*width = s;
if (!s)
return 0;
if (s == 1)
return nth(0)->clone();
vec* v = new vec(children_->begin(),
children_->begin() + s);
for (unsigned n = 0; n < s; ++n)
(*v)[n]->clone();
return instance(op_, v);
}
const char*
multop::op_name() const
{
switch (op_)
{
case And:
return "And";
case AndRat:
return "AndRat";
case AndNLM:
return "AndNLM";
case Or:
return "Or";
case OrRat:
return "OrRat";
case Concat:
return "Concat";
case Fusion:
return "Fusion";
}
SPOT_UNREACHABLE();
}
namespace
{
static void
gather_bool(multop::vec* v, multop::type op)
{
// Gather all boolean terms.
multop::vec* b = new multop::vec;
multop::vec::iterator i = v->begin();
while (i != v->end())
{
if ((*i)->is_boolean())
{
b->push_back(*i);
i = v->erase(i);
}
else
{
++i;
}
}
// - AndNLM(Exps1...,Bool1,Exps2...,Bool2,Exps3...) =
// AndNLM(And(Bool1,Bool2),Exps1...,Exps2...,Exps3...)
// - AndRat(Exps1...,Bool1,Exps2...,Bool2,Exps3...) =
// AndRat(And(Bool1,Bool2),Exps1...,Exps2...,Exps3...)
// - OrRat(Exps1...,Bool1,Exps2...,Bool2,Exps3...) =
// AndRat(Or(Bool1,Bool2),Exps1...,Exps2...,Exps3...)
if (!b->empty())
v->insert(v->begin(), multop::instance(op, b));
else
delete b;
}
}
multop::map multop::instances;
// We match equivalent formulae modulo "ACI rules"
// (i.e. associativity, commutativity and idempotence of the
// operator). For instance if `+' designates the OR operator and
// `0' is false (the neutral element for `+') , then `f+f+0' is
// equivalent to `f'.
const formula*
multop::instance(type op, vec* v)
{
// Inline children of same kind.
//
// When we construct a formula such as Multop(Op,X,Multop(Op,Y,Z))
// we will want to inline it as Multop(Op,X,Y,Z).
{
vec inlined;
vec::iterator i = v->begin();
while (i != v->end())
{
// Some simplification routines erase terms using null
// pointers that we must ignore.
if ((*i) == 0)
{
// FIXME: For commutative operators we should replace
// the pointer by the first non-null value at the end
// of the array instead of calling erase.
i = v->erase(i);
continue;
}
if (const multop* p = is_multop(*i, op))
{
unsigned ps = p->size();
for (unsigned n = 0; n < ps; ++n)
inlined.push_back(p->nth(n)->clone());
(*i)->destroy();
// FIXME: Do not use erase. See previous FIXME.
i = v->erase(i);
continue;
}
// All operators except "Concat" and "Fusion" are
// commutative, so we just keep a list of the inlined
// arguments that should later be added to the vector.
// For concat we have to keep track of the order of
// all the arguments.
if (op == Concat || op == Fusion)
inlined.push_back(*i);
++i;
}
if (op == Concat || op == Fusion)
v->swap(inlined);
else
v->insert(v->end(), inlined.begin(), inlined.end());
}
if (op != Concat && op != Fusion)
std::sort(v->begin(), v->end(), formula_ptr_less_than_bool_first());
unsigned orig_size = v->size();
const formula* neutral;
const formula* neutral2;
const formula* abs;
const formula* abs2;
const formula* weak_abs;
switch (op)
{
case And:
neutral = constant::true_instance();
neutral2 = 0;
abs = constant::false_instance();
abs2 = 0;
weak_abs = 0;
break;
case AndRat:
neutral = bunop::one_star();
neutral2 = 0;
abs = constant::false_instance();
abs2 = 0;
weak_abs = constant::empty_word_instance();
gather_bool(v, And);
break;
case AndNLM:
neutral = constant::empty_word_instance();
neutral2 = 0;
abs = constant::false_instance();
abs2 = 0;
weak_abs = constant::true_instance();
gather_bool(v, And);
break;
case Or:
neutral = constant::false_instance();
neutral2 = 0;
abs = constant::true_instance();
abs2 = 0;
weak_abs = 0;
break;
case OrRat:
neutral = constant::false_instance();
neutral2 = 0;
abs = bunop::one_star();
abs2 = 0;
weak_abs = 0;
gather_bool(v, Or);
break;
case Concat:
neutral = constant::empty_word_instance();
neutral2 = 0;
abs = constant::false_instance();
abs2 = 0;
weak_abs = 0;
// - Concat(Exps1...,FExps2...,1[*],FExps3...,Exps4) =
// Concat(Exps1...,1[*],Exps4)
// If FExps2... and FExps3 all accept [*0].
{
vec::iterator i = v->begin();
const formula* os = bunop::one_star();
while (i != v->end())
{
while (i != v->end() && !(*i)->accepts_eword())
++i;
if (i == v->end())
break;
vec::iterator b = i;
// b is the first expressions that accepts [*0].
// let's find more, and locate the position of
// 1[*] at the same time.
bool os_seen = false;
do
{
os_seen |= (*i == os);
++i;
}
while (i != v->end() && (*i)->accepts_eword());
if (os_seen) // [b..i) is a range that contains [*].
{
// Place [*] at the start of the range, and erase
// all other formulae.
(*b)->destroy();
*b++ = os->clone();
for (vec::iterator c = b; c < i; ++c)
(*c)->destroy();
i = v->erase(b, i);
}
}
}
break;
case Fusion:
neutral = constant::true_instance();
neutral2 = 0;
abs = constant::false_instance();
abs2 = constant::empty_word_instance();
weak_abs = 0;
// Make a first pass to group adjacent Boolean formulae.
// - Fusion(Exps1...,BoolExp1...BoolExpN,Exps2,Exps3...) =
// Fusion(Exps1...,And(BoolExp1...BoolExpN),Exps2,Exps3...)
{
vec::iterator i = v->begin();
while (i != v->end())
{
if ((*i)->is_boolean())
{
vec::iterator first = i;
++i;
if (i == v->end())
break;
if (!(*i)->is_boolean())
{
++i;
continue;
}
do
++i;
while (i != v->end() && (*i)->is_boolean());
// We have at least two adjacent Boolean formulae.
// Replace the first one by the conjunction of all.
vec* b = new vec;
b->insert(b->begin(), first, i);
i = v->erase(first + 1, i);
*first = instance(And, b);
}
else
{
++i;
}
}
}
break;
default:
neutral = 0;
neutral2 = 0;
abs = 0;
abs2 = 0;
weak_abs = 0;
break;
}
// Remove duplicates (except for Concat and Fusion). We can't use
// std::unique(), because we must destroy() any formula we drop.
// Also ignore neutral elements and handle absorbent elements.
{
const formula* last = 0;
vec::iterator i = v->begin();
bool weak_abs_seen = false;
while (i != v->end())
{
if ((*i == neutral) || (*i == neutral2) || (*i == last))
{
(*i)->destroy();
i = v->erase(i);
}
else if (*i == abs || *i == abs2)
{
for (i = v->begin(); i != v->end(); ++i)
(*i)->destroy();
delete v;
return abs->clone();
}
else
{
weak_abs_seen |= (*i == weak_abs);
if (op != Concat && op != Fusion) // Don't remove duplicates
last = *i;
++i;
}
}
if (weak_abs_seen)
{
if (op == AndRat)
{
// We have a* && [*0] && c = 0
// and a* && [*0] && c* = [*0]
// So if [*0] has been seen, check if alls term
// recognize the empty word.
bool acc_eword = true;
for (i = v->begin(); i != v->end(); ++i)
{
acc_eword &= (*i)->accepts_eword();
(*i)->destroy();
}
delete v;
if (acc_eword)
return weak_abs;
else
return abs;
}
else
{
// Similarly, a* & 1 & (c;d) = c;d
// a* & 1 & c* = 1
assert(op == AndNLM);
multop::vec tmp;
for (i = v->begin(); i != v->end(); ++i)
{
if (*i == weak_abs)
continue;
if ((*i)->accepts_eword())
{
(*i)->destroy();
continue;
}
tmp.push_back(*i);
}
if (tmp.empty())
tmp.push_back(weak_abs);
v->swap(tmp);
}
}
else if (op == Concat || op == Fusion)
{
// Perform an extra loop to merge starable items.
// f;f -> f[*2]
// f;f[*i..j] -> f[*i+1..j+1]
// f[*i..j];f -> f[*i+1..j+1]
// f[*i..j];f[*k..l] -> f[*i+k..j+l]
// same for FStar:
// f:f -> f[:*2]
// f:f[*i..j] -> f[:*i+1..j+1]
// f[:*i..j];f -> f[:*i+1..j+1]
// f[:*i..j];f[:*k..l] -> f[:*i+k..j+l]
bunop::type bop = op == Concat ? bunop::Star : bunop::FStar;
i = v->begin();
while (i != v->end())
{
vec::iterator fpos = i;
const formula* f;
unsigned min;
unsigned max;
bool changed = false;
if (const bunop* is = is_bunop(*i, bop))
{
f = is->child();
min = is->min();
max = is->max();
}
else
{
f = *i;
min = max = 1;
}
++i;
while (i != v->end())
{
const formula* f2;
unsigned min2;
unsigned max2;
if (const bunop* is = is_bunop(*i, bop))
{
f2 = is->child();
if (f2 != f)
break;
min2 = is->min();
max2 = is->max();
}
else
{
f2 = *i;
if (f2 != f)
break;
min2 = max2 = 1;
}
if (min2 == bunop::unbounded)
min = bunop::unbounded;
else if (min != bunop::unbounded)
min += min2;
if (max2 == bunop::unbounded)
max = bunop::unbounded;
else if (max != bunop::unbounded)
max += max2;
(*i)->destroy();
i = v->erase(i);
changed = true;
}
if (changed)
{
const formula* newfs =
bunop::instance(bop, f->clone(), min, max);
(*fpos)->destroy();
*fpos = newfs;
}
}
}
}
vec::size_type s = v->size();
if (s == 0)
{
delete v;
assert(neutral != 0);
return neutral->clone();
}
else if (s == 1)
{
// Simply replace Multop(Op,X) by X.
// Except we should never reduce the
// arguments of a Fusion operator to
// a list with a single formula that
// accepts [*0].
const formula* res = (*v)[0];
if (op != Fusion || orig_size == 1
|| !res->accepts_eword())
{
delete v;
return res;
}
// If Fusion(f, ...) reduce to Fusion(f), emit Fusion(1,f).
// to ensure that [*0] is not accepted.
v->insert(v->begin(), constant::true_instance());
}
const formula* res;
// Insert the key with the dummy nullptr just
// to check if p already exists.
auto ires = instances.emplace(key(op, v), nullptr);
if (!ires.second)
{
// The instance did already exists. Free v.
for (auto f: *v)
f->destroy();
delete v;
res = ires.first->second->clone();
}
else
{
// The instance did not already exist.
res = ires.first->second = new multop(op, v);
}
return res;
}
const formula*
multop::instance(type op, const formula* first, const formula* second)
{
vec* v = new vec;
v->push_back(first);
v->push_back(second);
return instance(op, v);
}
unsigned
multop::instance_count()
{
return instances.size();
}
std::ostream&
multop::dump_instances(std::ostream& os)
{
for (const auto& i: instances)
os << i.second << " = "
<< 1 + i.second->refs_ << " * "
<< i.second->dump()
<< '\n';
return os;
}
}
}

View file

@ -1,318 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire
// de Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris
// 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/// \file ltlast/multop.hh
/// \brief LTL multi-operand operators
#pragma once
#include "formula.hh"
#include <vector>
#include <map>
#include <iosfwd>
namespace spot
{
namespace ltl
{
/// \ingroup ltl_ast
/// \brief Multi-operand operators.
class SPOT_API multop final: public formula
{
public:
enum type { Or, OrRat, And, AndRat, AndNLM, Concat, Fusion };
/// List of formulae.
typedef std::vector<const formula*> vec;
/// \brief Build a spot::ltl::multop with two children.
///
/// If one of the children itself is a spot::ltl::multop
/// with the same type, it will be inlined. I.e., children
/// of that child will be added, and that child itself will
/// be destroyed. This allows incremental building of
/// n-ary ltl::multop.
///
/// This functions can perform slight optimizations and
/// may not return an ltl::multop object. See the other
/// instance function for the list of rewritings.
static const formula*
instance(type op, const formula* first, const formula* second);
/// \brief Build a spot::ltl::multop with many children.
///
/// Same as the other instance() function, but take a vector of
/// formulae as argument. This vector is acquired by the
/// spot::ltl::multop class, the caller should allocate it with
/// \c new, but not use it (especially not destroy it) after it
/// has been passed to spot::ltl::multop. Inside the vector,
/// null pointers are ignored.
///
/// Most operators (Or, OrRat, And, AndRat, Concat) are
/// associative, and are automatically inlined. Or, OrRat, And,
/// and AndRat are commutative, so their arguments are also
/// sorted, to ensure that "a & b" is equal to "b & a", also
/// duplicate arguments are removed.
///
/// Furthermore this function can perform slight optimizations
/// and may not return an ltl::multop object. For instance if
/// the vector contains only one unique element, this this
/// formula will be returned as-is. Neutral and absorbent element
/// are also taken care of. The following rewritings are performed
/// (the left patterns are rewritten as shown on the right):
///
/// - And(Exps1...,1,Exps2...) = And(Exps1...,Exps2...)
/// - And(Exps1...,0,Exps2...) = 0
/// - And(Exp) = Exp
/// - Or(Exps1...,1,Exps2...) = 1
/// - Or(Exps1...,0,Exps2...) = Or(Exps1...,Exps2...)
/// - Or(Exp) = Exp
/// - AndNLM(FExps1...,1,Exps2...) = AndNLM(Exps2...)
/// if Fexps1... accept [*0], and Exps2... don't.
/// - AndNLM(FExps1...,1,FExps2...) = 1
/// if Fexps1...,FExps2... all accept[*0].
/// - AndNLM(Exps1...,0,Exps2...) = 0
/// - AndNLM(Exps1...,[*0],Exps2...) = AndNLM(Exps1...,Exps2...)
/// - AndNLM(Exp) = Exp
/// - AndNLM(Exps1...,BoolExp1,Exps2...,BoolExp2,Exps3...) =
/// AndNLM(Exps1...,Exps2...,Exps3...,And(BoolExp1,BoolExp2))
/// - AndRat(Exps1...,0,Exps2...) = 0
/// - AndRat(Exps1...,BoolExp1,Exps2...,BoolExps2...) =
/// AndRat(Exps1...,Exps2...,And(BoolExp1,BoolExps2...))
/// - AndRat(Exps1...,[*0],Exps2...) = [*0] if all Expi accept [*0]
/// - AndRat(Exps1...,[*0],Exps2...) = 0 if some Expi reject [*0]
/// - AndRat(Exps1...,1[*],Exps2...) = AndRat(Exps1...,Exps2...)
/// - OrRat(Exps1...,0,Exps2...) = OrRat(Exps1...,Exps2...)
/// - OrRat(Exps1...,BoolExp1,Exps2...,BoolExps2...) =
/// OrRat(Exps1...,Exps2...,Or(BoolExp1,BoolExps2...))
/// - OrRat(Exps1...,1[*],Exps2...) = 1[*]
/// - Concat(Exps1...,0,Exps2...) = 0
/// - Concat(Exps1...,[*0],Exps2...) = Concat(Exps1...,Exps2...)
/// - Concat(Exps1...,FExps2...,1[*],FExps3...,Exps4) =
/// Concat(Exps1...,1[*],Exps4) if FExps2...FExps3... all accept [*0]
/// - Concat(Exp) = Exp
/// - Concat(Exps1...,E,E[*i..j],E[*k..l],Exps2...) =
/// Concat(Exps1...,E[*1+i+k..j+l],Exps2...) and similar forms
/// - Fusion(Exps1...1,Exps2...) = Fusion(Exps1...,Exps2...)
/// if at least one exp reject [*0]
/// - Fusion(Exps1...,0,Exps2...) = 0
/// - Fusion(Exps1...,[*0],Exps2...) = 0
/// - Fusion(Exp) = Exp
/// - Fusion(Exps1...,BoolExp1...BoolExpN,Exps2,Exps3...) =
/// Fusion(Exps1...,And(BoolExp1...BoolExpN),Exps2,Exps3...)
static const formula* instance(type op, vec* v);
virtual void accept(visitor& v) const;
/// Get the number of children.
unsigned size() const
{
return children_->size();
}
/// \brief Get the nth child.
///
/// Starting with \a n = 0.
const formula* nth(unsigned n) const
{
return (*children_)[n];
}
/// \brief construct a formula without the nth child.
///
/// If the formula \c f is <code>a|b|c|d</code> and <code>c</code>
/// is child number 2, then calling <code>f->all_but(2)</code> will
/// return a new formula <code>a|b|d</code>.
const formula* all_but(unsigned n) const;
/// \brief return the number of Boolean operands in the binop.
///
/// For instance if \c f <code>a|b|Xc|Gd</code>, this
/// returns 2.
unsigned boolean_count() const;
/// \brief return the Boolean part of the binop.
///
/// For instance if \c f <code>a|b|Xc|Gd</code>, this
/// returns <code>a|b</code>. Return 0 if there is no
/// Boolean operand.
///
/// If \a width is not null, it is filled with the number
/// of Boolean operands extracted (i.e., the result
/// of boolean_count())
const formula* boolean_operands(unsigned* width = 0) const;
/// Get the type of this operator.
type op() const
{
return op_;
}
/// Get the type of this operator, as a string.
const char* op_name() const;
/// Return a canonic representation of the atomic proposition
virtual std::string dump() const;
/// Number of instantiated multi-operand operators. For debugging.
static unsigned instance_count();
/// Dump all instances. For debugging.
static std::ostream& dump_instances(std::ostream& os);
protected:
typedef std::pair<type, vec*> key;
/// Comparison functor used internally by ltl::multop.
struct paircmp
{
bool
operator()(const key& p1, const key& p2) const
{
if (p1.first != p2.first)
return p1.first < p2.first;
return *p1.second < *p2.second;
}
};
typedef std::map<key, const multop*, paircmp> map;
static map instances;
multop(type op, vec* v);
virtual ~multop();
private:
type op_;
vec* children_;
};
/// \brief Cast \a f into a multop.
///
/// Cast \a f into a multop iff it is a multop instance. Return 0
/// otherwise. This is faster than \c dynamic_cast.
inline
const multop*
is_multop(const formula* f)
{
if (f->kind() != formula::MultOp)
return 0;
return static_cast<const multop*>(f);
}
/// \brief Cast \a f into a multop if it has type \a op.
///
/// Cast \a f into a multop iff it is a multop instance with operator \a op.
/// Returns 0 otherwise.
inline
const multop*
is_multop(const formula* f, multop::type op)
{
if (const multop* mo = is_multop(f))
if (mo->op() == op)
return mo;
return 0;
}
/// \brief Cast \a f into a multop if it has type \a op1 or \a op2.
///
/// Cast \a f into a multop iff it is a multop instance with
/// operator \a op1 or \a op2. Returns 0 otherwise.
inline
const multop*
is_multop(const formula* f, multop::type op1, multop::type op2)
{
if (const multop* mo = is_multop(f))
if (mo->op() == op1 || mo->op() == op2)
return mo;
return 0;
}
/// \brief Cast \a f into a multop if it is an And.
///
/// Return 0 otherwise.
inline
const multop*
is_And(const formula* f)
{
return is_multop(f, multop::And);
}
/// \brief Cast \a f into a multop if it is an AndRat.
///
/// Return 0 otherwise.
inline
const multop*
is_AndRat(const formula* f)
{
return is_multop(f, multop::AndRat);
}
/// \brief Cast \a f into a multop if it is an AndNLM.
///
/// Return 0 otherwise.
inline
const multop*
is_AndNLM(const formula* f)
{
return is_multop(f, multop::AndNLM);
}
/// \brief Cast \a f into a multop if it is an Or.
///
/// Return 0 otherwise.
inline
const multop*
is_Or(const formula* f)
{
return is_multop(f, multop::Or);
}
/// \brief Cast \a f into a multop if it is an OrRat.
///
/// Return 0 otherwise.
inline
const multop*
is_OrRat(const formula* f)
{
return is_multop(f, multop::OrRat);
}
/// \brief Cast \a f into a multop if it is a Concat.
///
/// Return 0 otherwise.
inline
const multop*
is_Concat(const formula* f)
{
return is_multop(f, multop::Concat);
}
/// \brief Cast \a f into a multop if it is a Fusion.
///
/// Return 0 otherwise.
inline
const multop*
is_Fusion(const formula* f)
{
return is_multop(f, multop::Fusion);
}
}
}

View file

@ -1,46 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2012, 2014 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/// \file ltlast/predecl.hh
/// \brief Predeclare all LTL node types.
///
/// This file is usually used when \b declaring methods and functions
/// over LTL nodes.
/// Use ltlast/allnodes.hh or an individual header when the definition of
/// the node is actually needed.
#pragma once
namespace spot
{
namespace ltl
{
struct visitor;
class atomic_prop;
class binop;
class bunop;
class constant;
class formula;
class multop;
class unop;
}
}

View file

@ -1,314 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire
// de Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2005 Laboratoire d'Informatique de Paris
// 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include "unop.hh"
#include "visitor.hh"
#include <cassert>
#include <cstddef>
#include <iostream>
#include "constant.hh"
#include "atomic_prop.hh"
#include "bunop.hh"
namespace spot
{
namespace ltl
{
unop::unop(type op, const formula* child)
: formula(UnOp), op_(op), child_(child)
{
props = child->get_props();
switch (op)
{
case Not:
is.not_marked = true;
is.eventual = child->is_universal();
is.universal = child->is_eventual();
is.in_nenoform = (child->kind() == AtomicProp);
is.sere_formula = is.boolean;
is.syntactic_safety = child->is_syntactic_guarantee();
is.syntactic_guarantee = child->is_syntactic_safety();
// is.syntactic_obligation inherited from child
is.syntactic_recurrence = child->is_syntactic_persistence();
is.syntactic_persistence = child->is_syntactic_recurrence();
is.accepting_eword = false;
break;
case X:
is.not_marked = true;
is.boolean = false;
is.syntactic_si = false;
is.sere_formula = false;
// is.syntactic_safety inherited
// is.syntactic_guarantee inherited
// is.syntactic_obligation inherited
// is.syntactic_recurrence inherited
// is.syntactic_persistence inherited
is.accepting_eword = false;
break;
case F:
is.not_marked = true;
is.boolean = false;
is.sere_formula = false;
is.finite = false;
is.sugar_free_ltl = false;
is.eventual = true;
is.syntactic_safety = false;
// is.syntactic_guarantee inherited
is.syntactic_obligation = is.syntactic_guarantee;
is.syntactic_recurrence = is.syntactic_guarantee;
// is.syntactic_persistence inherited
is.accepting_eword = false;
break;
case G:
is.not_marked = true;
is.boolean = false;
is.sere_formula = false;
is.finite = false;
is.sugar_free_ltl = false;
is.universal = true;
// is.syntactic_safety inherited
is.syntactic_guarantee = false;
is.syntactic_obligation = is.syntactic_safety;
// is.syntactic_recurrence inherited
is.syntactic_persistence = is.syntactic_safety;
is.accepting_eword = false;
break;
case NegClosure:
case NegClosureMarked:
is.not_marked = (op == NegClosure);
is.boolean = false;
is.ltl_formula = false;
is.psl_formula = true;
is.sere_formula = false;
is.syntactic_safety = is.finite;
is.syntactic_guarantee = true;
is.syntactic_obligation = true;
is.syntactic_recurrence = true;
is.syntactic_persistence = true;
is.accepting_eword = false;
assert(child->is_sere_formula());
assert(!child->is_boolean());
break;
case Closure:
is.not_marked = true;
is.boolean = false;
is.ltl_formula = false;
is.psl_formula = true;
is.sere_formula = false;
is.syntactic_safety = true;
is.syntactic_guarantee = is.finite;
is.syntactic_obligation = true;
is.syntactic_recurrence = true;
is.syntactic_persistence = true;
is.accepting_eword = false;
assert(child->is_sere_formula());
assert(!child->is_boolean());
break;
}
}
unop::~unop()
{
// Get this instance out of the instance map.
size_t c = instances.erase(key(op(), child()));
assert(c == 1);
(void) c; // For the NDEBUG case.
// Dereference child.
child()->destroy();
}
std::string
unop::dump() const
{
return std::string("unop(") + op_name() + ", " + child()->dump() + ")";
}
void
unop::accept(visitor& v) const
{
v.visit(this);
}
const char*
unop::op_name() const
{
switch (op_)
{
case Not:
return "Not";
case X:
return "X";
case F:
return "F";
case G:
return "G";
case Closure:
return "Closure";
case NegClosure:
return "NegClosure";
case NegClosureMarked:
return "NegClosureMarked";
}
SPOT_UNREACHABLE();
}
unop::map unop::instances;
const formula*
unop::instance(type op, const formula* child)
{
// Some trivial simplifications.
switch (op)
{
case F:
case G:
{
if (const unop* u = is_unop(child))
{
// F and G are idempotent.
if (u->op() == op)
return u;
}
// F(0) = G(0) = 0
// F(1) = G(1) = 1
if (child == constant::false_instance()
|| child == constant::true_instance())
return child;
assert(child != constant::empty_word_instance());
}
break;
case Not:
{
// !1 = 0
if (child == constant::true_instance())
return constant::false_instance();
// !0 = 1
if (child == constant::false_instance())
return constant::true_instance();
// ![*0] = 1[+]
if (child == constant::empty_word_instance())
return bunop::instance(bunop::Star,
constant::true_instance(), 1);
if (const unop* u = is_unop(child))
{
// "Not" is an involution.
if (u->op() == op)
{
const formula* c = u->child()->clone();
u->destroy();
return c;
}
// !Closure(Exp) = NegClosure(Exp)
if (u->op() == Closure)
{
const formula* c = unop::instance(NegClosure,
u->child()->clone());
u->destroy();
return c;
}
// !NegClosure(Exp) = Closure(Exp)
if (u->op() == NegClosure)
{
const formula* c = unop::instance(Closure,
u->child()->clone());
u->destroy();
return c;
}
}
break;
}
case X:
// X(1) = 1, X(0) = 0
if (child == constant::true_instance()
|| child == constant::false_instance())
return child;
assert(child != constant::empty_word_instance());
break;
case Closure:
// {0} = 0, {1} = 1, {b} = b
if (child->is_boolean())
return child;
// {[*0]} = 0
if (child == constant::empty_word_instance())
return constant::false_instance();
break;
case NegClosure:
case NegClosureMarked:
// {1} = 0
if (child == constant::true_instance())
return constant::false_instance();
// {0} = 1, {[*0]} = 1
if (child == constant::false_instance()
|| child == constant::empty_word_instance())
return constant::true_instance();
// {b} = !b
if (child->is_boolean())
return unop::instance(Not, child);
break;
}
const formula* res;
auto ires = instances.emplace(key(op, child), nullptr);
if (!ires.second)
{
// This instance already exists.
child->destroy();
res = ires.first->second->clone();
}
else
{
res = ires.first->second = new unop(op, child);
}
return res;
}
unsigned
unop::instance_count()
{
return instances.size();
}
std::ostream&
unop::dump_instances(std::ostream& os)
{
for (const auto& i: instances)
os << i.second << " = "
<< 1 + i.second->refs_ << " * "
<< i.second->dump()
<< '\n';
return os;
}
}
}

View file

@ -1,218 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris
// 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/// \file ltlast/unop.hh
/// \brief LTL unary operators
#pragma once
#include <map>
#include <iosfwd>
#include "formula.hh"
namespace spot
{
namespace ltl
{
/// \ingroup ltl_ast
/// \brief Unary operators.
class SPOT_API unop final : public formula
{
public:
enum type {
// LTL
Not, X, F, G,
// Closure
Closure, NegClosure, NegClosureMarked
};
/// \brief Build an unary operator with operation \a op and
/// child \a child.
///
/// The following trivial simplifications are performed
/// automatically (the left expression is rewritten as the right
/// expression):
/// - FF(Exp) = F(Exp)
/// - GG(Exp) = G(Exp)
/// - F(0) = 0
/// - G(0) = 0
/// - X(0) = 0
/// - F(1) = 1
/// - G(1) = 1
/// - X(1) = 1
/// - !1 = 0
/// - !0 = 1
/// - ![*0] = 1[+] (read below)
/// - !!Exp = Exp
/// - !Closure(Exp) = NegClosure(Exp)
/// - !NegClosure(Exp) = Closure(Exp)
/// - Closure([*0]) = 1
/// - Closure(1) = 1
/// - Closure(0) = 0
/// - Closure(b) = b
/// - NegClosure([*0]) = 0
/// - NegClosure(1) = 0
/// - NegClosure(0) = 1
/// - NegClosure(b) = !b
///
/// This rewriting implies that it is not possible to build an
/// LTL formula object that is SYNTACTICALLY equal to one of
/// these left expressions.
///
/// Note that the "![*0]" form cannot be read using the PSL
/// grammar. Spot cannot read it either. However some
/// BDD-based algorithm may need to negate any constant, so we
/// handle this one as well.
static const formula* instance(type op, const formula* child);
virtual void accept(visitor& v) const override;
/// Get the sole operand of this operator.
const formula* child() const
{
return child_;
}
/// Get the type of this operator.
type op() const
{
return op_;
}
/// Get the type of this operator, as a string.
const char* op_name() const;
/// Return a canonic representation of the atomic proposition
virtual std::string dump() const override;
/// Number of instantiated unary operators. For debugging.
static unsigned instance_count();
/// Dump all instances. For debugging.
static std::ostream& dump_instances(std::ostream& os);
protected:
typedef std::pair<type, const formula*> key;
typedef std::map<key, const unop*> map;
static map instances;
unop(type op, const formula* child);
virtual ~unop();
private:
type op_;
const formula* child_;
};
/// \brief Cast \a f into a unop
///
/// Cast \a f into a unop iff it is a unop instance. Return 0
/// otherwise. This is faster than \c dynamic_cast.
inline
const unop*
is_unop(const formula* f)
{
if (f->kind() != formula::UnOp)
return 0;
return static_cast<const unop*>(f);
}
/// \brief Cast \a f into a unop if it has type \a op.
///
/// Cast \a f into a unop iff it is a unop instance with operator \a op.
/// Returns 0 otherwise.
inline
const unop*
is_unop(const formula* f, unop::type op)
{
if (const unop* uo = is_unop(f))
if (uo->op() == op)
return uo;
return 0;
}
/// \brief Cast \a f into a unop if it is a Not.
///
/// Return 0 otherwise.
inline
const unop*
is_Not(const formula* f)
{
return is_unop(f, unop::Not);
}
/// \brief Cast \a f into a unop if it is a X.
///
/// Return 0 otherwise.
inline
const unop*
is_X(const formula* f)
{
return is_unop(f, unop::X);
}
/// \brief Cast \a f into a unop if it is a F.
///
/// Return 0 otherwise.
inline
const unop*
is_F(const formula* f)
{
return is_unop(f, unop::F);
}
/// \brief Cast \a f into a unop if it is a G.
///
/// Return 0 otherwise.
inline
const unop*
is_G(const formula* f)
{
return is_unop(f, unop::G);
}
/// \brief Cast \a f into a unop if has the form GF(...).
///
/// Return 0 otherwise.
inline
const unop*
is_GF(const formula* f)
{
if (const unop* op = is_G(f))
return is_F(op->child());
return 0;
}
/// \brief Cast \a f into a unop if has the form FG(...).
///
/// Return 0 otherwise.
inline
const unop*
is_FG(const formula* f)
{
if (const unop* op = is_F(f))
return is_G(op->child());
return 0;
}
}
}

View file

@ -1,51 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2012, 2013, 2014 Laboratoire de Recherche
// et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/// \file ltlast/visitor.hh
/// \brief LTL visitor interface
#pragma once
#include "misc/common.hh"
#include "predecl.hh"
namespace spot
{
namespace ltl
{
/// \ingroup ltl_essential
/// \brief Formula visitor
///
/// Implementing visitors is the prefered way
/// to traverse a formula, since it does not
/// involve any cast.
struct SPOT_API visitor
{
virtual ~visitor() {}
virtual void visit(const atomic_prop* node) = 0;
virtual void visit(const constant* node) = 0;
virtual void visit(const binop* node) = 0;
virtual void visit(const unop* node) = 0;
virtual void visit(const multop* node) = 0;
virtual void visit(const bunop* node) = 0;
};
}
}