ltlsynt: rework synthesis algorithms
ltlsynt now offers two algorithms: one where splitting occurs before determinization (the historical one) and one where determinization occurs before splitting. * bin/ltlsynt.cc: here * tests/core/ltlsynt.test: test it and refactor test file * NEWS: document it * spot/misc/game.hh, spot/misc/game.cc: remove Calude's algorithm
This commit is contained in:
parent
516e9536df
commit
bd75ab5b39
5 changed files with 101 additions and 423 deletions
|
|
@ -82,11 +82,6 @@ void parity_game::solve(region_t (&w)[2], strategy_t (&s)[2]) const
|
|||
solve_rec(states_, m, w, s);
|
||||
}
|
||||
|
||||
bool parity_game::solve_qp() const
|
||||
{
|
||||
return reachability_game(*this).is_reachable();
|
||||
}
|
||||
|
||||
parity_game::strategy_t
|
||||
parity_game::attractor(const region_t& subgame, region_t& set,
|
||||
unsigned max_parity, int p, bool attr_max) const
|
||||
|
|
@ -223,166 +218,4 @@ void parity_game::solve_rec(region_t& subgame, unsigned max_parity,
|
|||
subgame.insert(w0[!p].begin(), w0[!p].end());
|
||||
}
|
||||
|
||||
int reachability_state::compare(const state* other) const
|
||||
{
|
||||
auto o = down_cast<const reachability_state*>(other);
|
||||
assert(o);
|
||||
if (num_ != o->num())
|
||||
return num_ - o->num();
|
||||
if (b_ < o->b())
|
||||
return -1;
|
||||
if (b_ > o->b())
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool reachability_state::operator<(const reachability_state& o) const
|
||||
{
|
||||
// Heuristic to process nodes with a higher chance of leading to a target
|
||||
// node first.
|
||||
assert(b_.size() == o.b().size());
|
||||
for (unsigned i = b_.size(); i > 0; --i)
|
||||
if (b_[i - 1] != o.b()[i - 1])
|
||||
return b_[i - 1] > o.b()[i - 1];
|
||||
return num_ < o.num();
|
||||
}
|
||||
|
||||
|
||||
|
||||
const reachability_state* reachability_game_succ_iterator::dst() const
|
||||
{
|
||||
// NB: colors are indexed at 1 in Calude et al.'s paper and at 0 in spot
|
||||
// All acceptance sets are therefore incremented (which is already done by
|
||||
// max_set), so that 0 can be kept as a special value indicating that no
|
||||
// i-sequence is tracked at this index. Hence the parity switch in the
|
||||
// following implementation, compared to the paper.
|
||||
std::vector<unsigned> b = state_.b();
|
||||
unsigned a = it_->acc.max_set();
|
||||
assert(a);
|
||||
unsigned i = -1U;
|
||||
bool all_even = a % 2 == 0;
|
||||
for (unsigned j = 0; j < b.size(); ++j)
|
||||
{
|
||||
if ((b[j] % 2 == 1 || b[j] == 0) && all_even)
|
||||
i = j;
|
||||
else if (b[j] > 0 && a > b[j])
|
||||
i = j;
|
||||
all_even = all_even && b[j] > 0 && b[j] % 2 == 0;
|
||||
}
|
||||
if (i != -1U)
|
||||
{
|
||||
b[i] = a;
|
||||
for (unsigned j = 0; j < i; ++j)
|
||||
b[j] = 0;
|
||||
}
|
||||
return new reachability_state(it_->dst, b, !state_.anke());
|
||||
}
|
||||
|
||||
|
||||
|
||||
const reachability_state* reachability_game::get_init_state() const
|
||||
{
|
||||
// b[ceil(log(n + 1))] != 0 implies there is an i-sequence of length
|
||||
// 2^(ceil(log(n + 1))) >= 2^log(n + 1) = n + 1, so it has to contain a
|
||||
// cycle.
|
||||
unsigned i = std::ceil(std::log2(pg_.num_states() + 1));
|
||||
return new reachability_state(pg_.get_init_state_number(),
|
||||
std::vector<unsigned>(i + 1),
|
||||
false);
|
||||
}
|
||||
|
||||
reachability_game_succ_iterator*
|
||||
reachability_game::succ_iter(const state* s) const
|
||||
{
|
||||
auto state = down_cast<const reachability_state*>(s);
|
||||
return new reachability_game_succ_iterator(pg_, *state);
|
||||
}
|
||||
|
||||
std::string reachability_game::format_state(const state* s) const
|
||||
{
|
||||
auto state = down_cast<const reachability_state*>(s);
|
||||
std::ostringstream fmt;
|
||||
bool first = true;
|
||||
fmt << state->num() << ", ";
|
||||
fmt << '[';
|
||||
for (unsigned b : state->b())
|
||||
{
|
||||
if (!first)
|
||||
fmt << ',';
|
||||
else
|
||||
first = false;
|
||||
fmt << b;
|
||||
}
|
||||
fmt << ']';
|
||||
return fmt.str();
|
||||
}
|
||||
|
||||
bool reachability_game::is_reachable()
|
||||
{
|
||||
std::set<spot::reachability_state> todo{*init_state_};
|
||||
while (!todo.empty())
|
||||
{
|
||||
spot::reachability_state v = *todo.begin();
|
||||
todo.erase(todo.begin());
|
||||
|
||||
std::vector<spot::const_reachability_state_ptr> succs;
|
||||
spot::reachability_game_succ_iterator* it = succ_iter(&v);
|
||||
for (it->first(); !it->done(); it->next())
|
||||
succs.push_back(spot::const_reachability_state_ptr(it->dst()));
|
||||
|
||||
if (is_target(v))
|
||||
{
|
||||
c_[v] = 1;
|
||||
if (mark(v))
|
||||
return true;
|
||||
continue;
|
||||
}
|
||||
else if (v.anke())
|
||||
c_[v] = 1;
|
||||
else
|
||||
c_[v] = succs.size();
|
||||
for (auto succ: succs)
|
||||
{
|
||||
if (parents_[*succ].empty())
|
||||
{
|
||||
if (*succ != *init_state_)
|
||||
{
|
||||
todo.insert(*succ);
|
||||
parents_[*succ] = { v };
|
||||
c_[*succ] = -1U;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
parents_[*succ].push_back(v);
|
||||
if (c_[*succ] == 0 && mark(v))
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool reachability_game::mark(const spot::reachability_state& s)
|
||||
{
|
||||
if (c_[s] > 0)
|
||||
{
|
||||
--c_[s];
|
||||
if (c_[s] == 0)
|
||||
{
|
||||
if (s == *init_state_)
|
||||
return true;
|
||||
for (auto& u: parents_[s])
|
||||
if (mark(u))
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool reachability_game::is_target(const reachability_state& v)
|
||||
{
|
||||
return v.b().back();
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -108,31 +108,6 @@ public:
|
|||
\endverbatim */
|
||||
void solve(region_t (&w)[2], strategy_t (&s)[2]) const;
|
||||
|
||||
/// Whether player 1 has a winning strategy from the initial state.
|
||||
/// Implements Calude et al.'s quasipolynomial time algorithm.
|
||||
/** \verbatim
|
||||
@inproceedings{calude.17.stoc,
|
||||
author = {Calude, Cristian S. and Jain, Sanjay and Khoussainov,
|
||||
Bakhadyr and Li, Wei and Stephan, Frank},
|
||||
title = {Deciding Parity Games in Quasipolynomial Time},
|
||||
booktitle = {Proceedings of the 49th Annual ACM SIGACT Symposium on
|
||||
Theory of Computing},
|
||||
series = {STOC 2017},
|
||||
year = {2017},
|
||||
isbn = {978-1-4503-4528-6},
|
||||
location = {Montreal, Canada},
|
||||
pages = {252--263},
|
||||
numpages = {12},
|
||||
url = {http://doi.acm.org/10.1145/3055399.3055409},
|
||||
doi = {10.1145/3055399.3055409},
|
||||
acmid = {3055409},
|
||||
publisher = {ACM},
|
||||
address = {New York, NY, USA},
|
||||
keywords = {Muller Games, Parity Games, Quasipolynomial Time Algorithm},
|
||||
}
|
||||
\endverbatim */
|
||||
bool solve_qp() const;
|
||||
|
||||
private:
|
||||
typedef twa_graph::graph_t::edge_storage_t edge_t;
|
||||
|
||||
|
|
@ -149,159 +124,4 @@ private:
|
|||
region_t (&w)[2], strategy_t (&s)[2]) const;
|
||||
};
|
||||
|
||||
|
||||
class reachability_state: public state
|
||||
{
|
||||
private:
|
||||
unsigned num_;
|
||||
std::vector<unsigned> b_;
|
||||
bool anke_;
|
||||
|
||||
public:
|
||||
reachability_state(unsigned state, const std::vector<unsigned>& b,
|
||||
bool anke)
|
||||
: num_(state), b_(b), anke_(anke)
|
||||
{
|
||||
}
|
||||
|
||||
int compare(const state* other) const override;
|
||||
|
||||
bool operator==(const reachability_state& o) const
|
||||
{
|
||||
return compare(&o) == 0;
|
||||
}
|
||||
|
||||
bool operator!=(const reachability_state& o) const
|
||||
{
|
||||
return compare(&o) != 0;
|
||||
}
|
||||
|
||||
bool operator<(const reachability_state& o) const;
|
||||
|
||||
size_t hash() const override
|
||||
{
|
||||
size_t hash = wang32_hash(num_);
|
||||
for (unsigned i = 0; i < b_.size(); ++i)
|
||||
hash ^= wang32_hash(b_[i]) ^ wang32_hash(i);
|
||||
return hash;
|
||||
}
|
||||
|
||||
reachability_state* clone() const override
|
||||
{
|
||||
return new reachability_state(*this);
|
||||
}
|
||||
|
||||
std::vector<unsigned> b() const
|
||||
{
|
||||
return b_;
|
||||
}
|
||||
|
||||
unsigned num() const
|
||||
{
|
||||
return num_;
|
||||
}
|
||||
|
||||
bool anke() const
|
||||
{
|
||||
return anke_;
|
||||
}
|
||||
};
|
||||
|
||||
typedef std::shared_ptr<const reachability_state>
|
||||
const_reachability_state_ptr;
|
||||
|
||||
struct reachability_state_hash
|
||||
{
|
||||
size_t operator()(const reachability_state& state) const
|
||||
{
|
||||
return state.hash();
|
||||
}
|
||||
};
|
||||
|
||||
class reachability_game_succ_iterator final: public twa_succ_iterator
|
||||
{
|
||||
private:
|
||||
const parity_game& pg_;
|
||||
const reachability_state& state_;
|
||||
internal::edge_iterator<const twa_graph::graph_t> it_;
|
||||
|
||||
public:
|
||||
reachability_game_succ_iterator(const parity_game& pg,
|
||||
const reachability_state& s)
|
||||
: pg_(pg), state_(s)
|
||||
{
|
||||
}
|
||||
|
||||
bool first() override
|
||||
{
|
||||
it_ = pg_.out(state_.num()).begin();
|
||||
return it_ != pg_.out(state_.num()).end();
|
||||
}
|
||||
|
||||
bool next() override
|
||||
{
|
||||
++it_;
|
||||
return it_ != pg_.out(state_.num()).end();
|
||||
}
|
||||
|
||||
bool done() const override
|
||||
{
|
||||
return it_ == pg_.out(state_.num()).end();
|
||||
}
|
||||
|
||||
const reachability_state* dst() const override;
|
||||
|
||||
bdd cond() const override
|
||||
{
|
||||
return bddtrue;
|
||||
}
|
||||
|
||||
acc_cond::mark_t acc() const override
|
||||
{
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
||||
// On-the-fly reachability game interface for a max even parity game such
|
||||
// that a target is reachable iff there is a memoryless winning strategy
|
||||
// in the parity game for player 1.
|
||||
class reachability_game final: public twa
|
||||
{
|
||||
private:
|
||||
typedef std::unordered_map<spot::reachability_state, unsigned,
|
||||
spot::reachability_state_hash> wincount_t;
|
||||
typedef std::unordered_map<spot::reachability_state,
|
||||
std::vector<spot::reachability_state>,
|
||||
spot::reachability_state_hash> parents_t;
|
||||
|
||||
const parity_game& pg_;
|
||||
// number of successors that need to have a winning strategy in order for
|
||||
// a given node to have a winning strategy.
|
||||
wincount_t c_;
|
||||
parents_t parents_;
|
||||
const_reachability_state_ptr init_state_; // cache
|
||||
|
||||
public:
|
||||
|
||||
reachability_game(const parity_game& pg)
|
||||
: twa(std::make_shared<bdd_dict>()), pg_(pg)
|
||||
{
|
||||
init_state_ = std::shared_ptr<const reachability_state>(get_init_state());
|
||||
}
|
||||
|
||||
const reachability_state* get_init_state() const override;
|
||||
|
||||
reachability_game_succ_iterator* succ_iter(const state* s) const override;
|
||||
|
||||
std::string format_state(const state* s) const override;
|
||||
|
||||
bool is_reachable();
|
||||
|
||||
private:
|
||||
bool mark(const spot::reachability_state& s);
|
||||
|
||||
bool is_target(const reachability_state& s);
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue