spot/src/tgbaalgos/tau03.cc
Alexandre Duret-Lutz 06c69f88ff Introduce tgba::release_iter().
Instead of "delete iter;" we now do "aut->release_iter(iter);" to
give the iterator back to the automaton.  The TGBA classes now
reuse a previously returned tgba_succ_iterator to answer a succ_iter()
call, therefore avoiding (1) memory allocation, as well as (2) vtable
and other constant member initialization.

* src/tgba/tgba.hh, src/tgba/tgba.cc (release_iter, iter_cache_):
Implement a release_iter() that stores the released iterator
in iter_cache_.
* src/tgba/succiter.hh (internal::succ_iterable): Move...
* src/tgba/tgba.hh (tgba::succ_iterable): ... here. And use
release_iter().

* iface/dve2/dve2.cc, src/kripke/kripke.cc, src/kripke/kripke.hh,
src/tgba/succiterconcrete.cc, src/tgba/succiterconcrete.hh,
src/tgba/taatgba.hh, src/tgba/tgbabddconcrete.cc,
src/tgba/tgbaexplicit.hh, src/tgba/tgbamask.cc, src/tgba/tgbaproduct.cc,
src/tgba/tgbaproxy.cc, src/tgba/tgbascc.cc, src/tgba/tgbatba.cc,
src/tgba/tgbaunion.cc, src/tgba/tgbaunion.hh, src/tgba/wdbacomp.cc,
src/tgbaalgos/bfssteps.cc, src/tgbaalgos/compsusp.cc,
src/tgbaalgos/cycles.cc, src/tgbaalgos/dtbasat.cc,
src/tgbaalgos/dtgbasat.cc, src/tgbaalgos/gtec/gtec.cc,
src/tgbaalgos/gv04.cc, src/tgbaalgos/isweakscc.cc,
src/tgbaalgos/lbtt.cc, src/tgbaalgos/ltl2tgba_fm.cc,
src/tgbaalgos/magic.cc, src/tgbaalgos/ndfs_result.hxx,
src/tgbaalgos/neverclaim.cc, src/tgbaalgos/reachiter.cc,
src/tgbaalgos/replayrun.cc, src/tgbaalgos/safety.cc,
src/tgbaalgos/scc.cc, src/tgbaalgos/se05.cc,
src/tgbaalgos/simulation.cc, src/tgbaalgos/tau03.cc,
src/tgbaalgos/tau03opt.cc: Use release_iter() instead of deleting
iterators, and used recycle iter_cache_ in implementations of
tgba::succ_iter().
2014-02-12 14:08:47 +01:00

382 lines
11 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2011, 2013, 2014 Laboratoire de Recherche et
// Developpement de l'Epita (LRDE).
// Copyright (C) 2004, 2005 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/// FIXME: Add
/// - a bit-state hashing version.
//#define TRACE
#include <iostream>
#ifdef TRACE
#define trace std::cerr
#else
#define trace while (0) std::cerr
#endif
#include <cassert>
#include <list>
#include "misc/hash.hh"
#include "tgba/tgba.hh"
#include "emptiness.hh"
#include "emptiness_stats.hh"
#include "tau03.hh"
#include "ndfs_result.hxx"
namespace spot
{
namespace
{
enum color {WHITE, BLUE};
/// \brief Emptiness checker on spot::tgba automata having at most one
/// acceptance condition (i.e. a TBA).
template <typename heap>
class tau03_search : public emptiness_check, public ec_statistics
{
public:
/// \brief Initialize the search algorithm on the automaton \a a
tau03_search(const tgba *a, size_t size, option_map o)
: emptiness_check(a, o),
h(size),
all_cond(a->all_acceptance_conditions())
{
assert(a->number_of_acceptance_conditions() > 0);
}
virtual ~tau03_search()
{
// Release all iterators on the stacks.
while (!st_blue.empty())
{
h.pop_notify(st_blue.front().s);
a_->release_iter(st_blue.front().it);
st_blue.pop_front();
}
while (!st_red.empty())
{
h.pop_notify(st_red.front().s);
a_->release_iter(st_red.front().it);
st_red.pop_front();
}
}
/// \brief Perform a Magic Search.
///
/// \return non null pointer iff the algorithm has found an
/// accepting path.
virtual emptiness_check_result* check()
{
if (!st_blue.empty())
return 0;
assert(st_red.empty());
const state* s0 = a_->get_init_state();
inc_states();
h.add_new_state(s0, BLUE);
push(st_blue, s0, bddfalse, bddfalse);
if (dfs_blue())
return new ndfs_result<tau03_search<heap>, heap>(*this);
return 0;
}
virtual std::ostream& print_stats(std::ostream &os) const
{
os << states() << " distinct nodes visited" << std::endl;
os << transitions() << " transitions explored" << std::endl;
os << max_depth() << " nodes for the maximal stack depth" << std::endl;
return os;
}
const heap& get_heap() const
{
return h;
}
const stack_type& get_st_blue() const
{
return st_blue;
}
const stack_type& get_st_red() const
{
return st_red;
}
private:
void push(stack_type& st, const state* s,
const bdd& label, const bdd& acc)
{
inc_depth();
tgba_succ_iterator* i = a_->succ_iter(s);
i->first();
st.push_front(stack_item(s, i, label, acc));
}
void pop(stack_type& st)
{
dec_depth();
a_->release_iter(st.front().it);
st.pop_front();
}
/// \brief Stack of the blue dfs.
stack_type st_blue;
/// \brief Stack of the red dfs.
stack_type st_red;
/// \brief Map where each visited state is colored
/// by the last dfs visiting it.
heap h;
/// The unique acceptance condition of the automaton \a a.
bdd all_cond;
bool dfs_blue()
{
while (!st_blue.empty())
{
stack_item& f = st_blue.front();
trace << "DFS_BLUE treats: " << a_->format_state(f.s) << std::endl;
if (!f.it->done())
{
const state *s_prime = f.it->current_state();
trace << " Visit the successor: "
<< a_->format_state(s_prime) << std::endl;
bdd label = f.it->current_condition();
bdd acc = f.it->current_acceptance_conditions();
// Go down the edge (f.s, <label, acc>, s_prime)
f.it->next();
inc_transitions();
typename heap::color_ref c_prime = h.get_color_ref(s_prime);
if (c_prime.is_white())
{
trace << " It is white, go down" << std::endl;
inc_states();
h.add_new_state(s_prime, BLUE);
push(st_blue, s_prime, label, acc);
}
else
{
trace << " It is blue, pop it" << std::endl;
h.pop_notify(s_prime);
}
}
else
// Backtrack the edge
// (predecessor of f.s in st_blue, <f.label, f.acc>, f.s)
{
trace << " All the successors have been visited"
<< ", rescan this successors"
<< std::endl;
typename heap::color_ref c = h.get_color_ref(f.s);
assert(!c.is_white());
for (auto i: a_->succ(f.s))
{
inc_transitions();
const state *s_prime = i->current_state();
trace << "DFS_BLUE rescanning the arc from "
<< a_->format_state(f.s) << " to "
<< a_->format_state(s_prime) << std::endl;
bdd label = i->current_condition();
bdd acc = i->current_acceptance_conditions();
typename heap::color_ref c_prime = h.get_color_ref(s_prime);
assert(!c_prime.is_white());
bdd acu = acc | c.get_acc();
if ((c_prime.get_acc() & acu) != acu)
{
trace << " a propagation is needed, go down"
<< std::endl;
c_prime.cumulate_acc(acu);
push(st_red, s_prime, label, acc);
dfs_red(acu);
}
}
if (c.get_acc() == all_cond)
{
trace << "DFS_BLUE propagation is successful, report a"
<< " cycle" << std::endl;
return true;
}
else
{
trace << "DFS_BLUE propagation is unsuccessful, pop it"
<< std::endl;
h.pop_notify(f.s);
pop(st_blue);
}
}
}
return false;
}
void dfs_red(const bdd& acu)
{
assert(!st_red.empty());
while (!st_red.empty())
{
stack_item& f = st_red.front();
trace << "DFS_RED treats: " << a_->format_state(f.s) << std::endl;
if (!f.it->done())
{
const state *s_prime = f.it->current_state();
trace << " Visit the successor: "
<< a_->format_state(s_prime) << std::endl;
bdd label = f.it->current_condition();
bdd acc = f.it->current_acceptance_conditions();
// Go down the edge (f.s, <label, acc>, s_prime)
f.it->next();
inc_transitions();
typename heap::color_ref c_prime = h.get_color_ref(s_prime);
if (c_prime.is_white())
{
trace << " It is white, pop it" << std::endl;
s_prime->destroy();
}
else if ((c_prime.get_acc() & acu) != acu)
{
trace << " It is blue and propagation "
<< "is needed, go down" << std::endl;
c_prime.cumulate_acc(acu);
push(st_red, s_prime, label, acc);
}
else
{
trace << " It is blue and no propagation "
<< "is needed, pop it" << std::endl;
h.pop_notify(s_prime);
}
}
else // Backtrack
{
trace << " All the successors have been visited, pop it"
<< std::endl;
h.pop_notify(f.s);
pop(st_red);
}
}
}
};
class explicit_tau03_search_heap
{
public:
class color_ref
{
public:
color_ref(color* c, bdd* a) :p(c), acc(a)
{
}
color get_color() const
{
return *p;
}
void set_color(color c)
{
assert(!is_white());
*p = c;
}
const bdd& get_acc() const
{
assert(!is_white());
return *acc;
}
void cumulate_acc(const bdd& a)
{
assert(!is_white());
*acc |= a;
}
bool is_white() const
{
return p == 0;
}
private:
color *p;
bdd* acc;
};
explicit_tau03_search_heap(size_t)
{
}
~explicit_tau03_search_heap()
{
hash_type::const_iterator s = h.begin();
while (s != h.end())
{
// Advance the iterator before deleting the "key" pointer.
const state* ptr = s->first;
++s;
ptr->destroy();
}
}
color_ref get_color_ref(const state*& s)
{
hash_type::iterator it = h.find(s);
if (it == h.end())
return color_ref(0, 0);
if (s != it->first)
{
s->destroy();
s = it->first;
}
return color_ref(&it->second.first, &it->second.second);
}
void add_new_state(const state* s, color c)
{
assert(h.find(s) == h.end());
h.insert(std::make_pair(s, std::make_pair(c, bddfalse)));
}
void pop_notify(const state*) const
{
}
bool has_been_visited(const state* s) const
{
hash_type::const_iterator it = h.find(s);
return (it != h.end());
}
enum { Has_Size = 1 };
int size() const
{
return h.size();
}
private:
typedef std::unordered_map<const state*, std::pair<color, bdd>,
state_ptr_hash, state_ptr_equal> hash_type;
hash_type h;
};
} // anonymous
emptiness_check* explicit_tau03_search(const tgba *a, option_map o)
{
return new tau03_search<explicit_tau03_search_heap>(a, 0, o);
}
}