Fixes #354. * spot/tl/simplify.cc: Implement the rules. * doc/tl/tl.tex, NEWS: Document them. * tests/core/reduccmp.test: Add tests. * tests/core/det.test, tests/core/satmin.test: Adjust.
442 lines
11 KiB
Bash
Executable file
442 lines
11 KiB
Bash
Executable file
#! /bin/sh
|
|
# -*- coding: utf-8 -*-
|
|
# Copyright (C) 2009-2014, 2016-2018 Laboratoire de Recherche et
|
|
# Developpement de l'Epita (LRDE).
|
|
# Copyright (C) 2004, 2006 Laboratoire d'Informatique de Paris 6 (LIP6),
|
|
# département Systèmes Répartis Coopératifs (SRC), Université Pierre
|
|
# et Marie Curie.
|
|
#
|
|
# This file is part of Spot, a model checking library.
|
|
#
|
|
# Spot is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
# License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
# Check LTL reductions
|
|
|
|
. ./defs || exit 1
|
|
|
|
set -e
|
|
|
|
cat >common.txt <<EOF
|
|
# No reduction
|
|
a U b, a U b
|
|
a R b, a R b
|
|
a & b, a & b
|
|
a | b, a | b
|
|
a & (a U b), a & (a U b)
|
|
a | (a U b), a | (a U b)
|
|
|
|
# Syntactic reduction
|
|
a & (!b R !a), false
|
|
(!b R !a) & a, false
|
|
a & (!b R !a) & c, false
|
|
c & (!b R !a) & a, false
|
|
|
|
a & (!b M !a), false
|
|
(!b M !a) & a, false
|
|
a & (!b M !a) & c, false
|
|
c & (!b M !a) & a, false
|
|
|
|
a & (b U a), a
|
|
(b U a) & a, a
|
|
a | (b U a), (b U a)
|
|
(b U a) | a, (b U a)
|
|
a U (b U a), (b U a)
|
|
|
|
a & (b W a), a
|
|
(b W a) & a, a
|
|
a | (b W a), (b W a)
|
|
(b W a) | a, (b W a)
|
|
a W (b W a), (b W a)
|
|
|
|
a & (b U a) & a, a
|
|
a & (b U a) & a, a
|
|
a | (b U a) | a, (b U a)
|
|
a | (b U a) | a, (b U a)
|
|
a U (b U a), (b U a)
|
|
|
|
a & c & (b W a), a & c
|
|
a & d & c & e & f & g & b & (x W (g & f)), a&b&c&d&e&f&g
|
|
(F!a & X(!b R a)) | (Ga & X(b U !a)), F!a & X(!b R a)
|
|
d & ((!a & d) | (a & d)), (!a & d) | (a & d)
|
|
|
|
a <-> !a, 0
|
|
a <-> a, 1
|
|
a ^ a, 0
|
|
a ^ !a, 1
|
|
|
|
GFa | FGa, GFa
|
|
XXGa | GFa, GFa
|
|
GFa & FGa, FGa
|
|
XXGa & GFa, XXGa
|
|
|
|
# Basic reductions
|
|
X(true), true
|
|
X(false), false
|
|
F(true), true
|
|
F(false), false
|
|
|
|
XGF(f), GF(f)
|
|
|
|
# not reduced
|
|
a R (b W G(c)), a R (b W G(c))
|
|
# not reduced.
|
|
a M ((a&b) R c), a M ((a&b) R c)
|
|
# not reduced.
|
|
(a&b) W (a U c), (a&b) W (a U c)
|
|
|
|
# Eventuality and universality class reductions
|
|
FFa, Fa
|
|
FGFa, GFa
|
|
b U Fa, Fa
|
|
b U GFa, GFa
|
|
Ga, Ga
|
|
|
|
a U XXXFb, XXXFb
|
|
|
|
# issue 93
|
|
GFa U Ga, FGa
|
|
FGa U Ga, FGa
|
|
GFa U a, GFa U a
|
|
Fa U a, Fa
|
|
GFa R Fa, GFa
|
|
FGa R Fa, GFa
|
|
FGa R a, FGa R a
|
|
Ga R a, Ga
|
|
|
|
# issue 293
|
|
F(G!p1 | p1) W Fp1, 1
|
|
F(p1 | G!p1) W Fp1, 1
|
|
F(Fp1 -> p1) W Fp1, 1
|
|
G(Fp0 | (p0 M (Fp0 W p0))), GFp0
|
|
G((p0 M (Fp0 W p0)) | Fp0), GFp0
|
|
G((Fp0) W ((p0 M (Fp0 W p0)))), GFp0
|
|
!G((Fp0) W ((p0 M (Fp0 W p0)))), FG!p0
|
|
EOF
|
|
|
|
cp common.txt nottau.txt
|
|
cat >>nottau.txt<<EOF
|
|
G(true), true
|
|
G(false), false
|
|
|
|
a M 1, Fa
|
|
a W 0, Ga
|
|
1 U a, Fa
|
|
0 R a, Ga
|
|
|
|
G(a R b), G(b)
|
|
|
|
FX(a), XF(a)
|
|
GX(a), XG(a)
|
|
|
|
(Xf W 0) | X(f W 0), XGf
|
|
XFa & FXa, XFa
|
|
|
|
GF(a | Xb), GF(a | b)
|
|
GF(a | Fb), GF(a | b)
|
|
GF(Xa | Fb), GF(a | b)
|
|
FG(a & Xb), FG(a & b)
|
|
FG(a & Gb), FG(a & b)
|
|
FG(Xa & Gb), FG(a & b)
|
|
|
|
X(a) U X(b), X(a U b)
|
|
X(a) R X(b), X(a R b)
|
|
Xa & Xb, X(a & b)
|
|
Xa | Xb, X(a | b)
|
|
|
|
X(a) M X(b), X(a M b)
|
|
X(a) W X(b), X(a W b)
|
|
X(a) M b, b & X(b U a)
|
|
X(a) R b, b & X(b W a)
|
|
X(a) U b, b | X(b M a)
|
|
X(a) W b, b | X(b R a)
|
|
|
|
(a U b) & (c U b), (a & c) U b
|
|
(a R b) & (a R c), a R (b & c)
|
|
(a U b) | (a U c), a U (b | c)
|
|
(a R b) | (c R b), (a | c) R b
|
|
|
|
Xa & FGb, X(a & FGb)
|
|
Xa | FGb, X(a | FGb)
|
|
Xa & GFb, X(a & GFb)
|
|
Xa | GFb, X(a | GFb)
|
|
# The following is not reduced to F(a) & GFb. because
|
|
# (1) is does not help the translate the formula into a
|
|
# smaller automaton, and ...
|
|
F(a & GFb), F(a & GFb)
|
|
# (2) ... it would hinder this useful reduction (that helps to
|
|
# produce a smaller automaton)
|
|
F(f1 & GF(f2)) | F(a & GF(b)), F((f1&GFf2)|(a&GFb))
|
|
# FIXME: Don't we want the opposite rewriting?
|
|
# rewriting Fa & GFb as F(a & GFb) seems better, but
|
|
# it not clear how that scales to Fa & Fb & GFc...
|
|
Fa & GFb, Fa & GFb
|
|
G(a | GFb), Ga | GFb
|
|
# The following is not reduced to F(a & c) & GF(b) for the same
|
|
# reason as above.
|
|
F(a & GFb & c), F(a & GFb & c)
|
|
G(a | GFb | c), G(a | c) | GFb
|
|
|
|
GFa <=> GFb, F(G(Fa&Fb)|G(!a&!b))
|
|
FGa | (GFa & GFb), F(Ga | (G(Fa & Fb)))
|
|
|
|
Gb W a, Gb|a
|
|
a W Fb, a W Fb
|
|
Fb M Fa, Fa & Fb
|
|
a M Gb, a M Gb
|
|
GFa R Xf, X(GFa R f)
|
|
GFa U Xf, X(GFa U f)
|
|
|
|
a U (b | G(a) | c), a W (b | c)
|
|
a U (G(a)), Ga
|
|
(a U b) | (a W c), a W (b | c)
|
|
(a U b) | Ga, a W b
|
|
|
|
a R (b & F(a) & c), a M (b & c)
|
|
a R (F(a)), Fa
|
|
(a R b) & (a M c), a M (b & c)
|
|
(a R b) & Fa, a M b
|
|
|
|
(a U b) & (c W b), (a & c) U b
|
|
(a W b) & (c W b), (a & c) W b
|
|
(a R b) | (c M b), (a | c) R b
|
|
(a M b) | (c M b), (a | c) M b
|
|
|
|
(a R b) | Gb, a R b
|
|
(a M b) | Gb, a R b
|
|
(a U b) & Fb, a U b
|
|
(a W b) & Fb, a U b
|
|
(a M b) | Gb | (c M b), (a | c) R b
|
|
|
|
GFGa, FGa
|
|
b R Ga, Ga
|
|
b R FGa, FGa
|
|
|
|
G(!a M a) M 1, 0
|
|
G(!a M a) U 1, 1
|
|
a R (!a M a), 0
|
|
a W (!a M a), Ga
|
|
|
|
F(a U b), Fb
|
|
F(a M b), F(a & b)
|
|
G(a R b), Gb
|
|
G(a W b), G(a | b)
|
|
|
|
Fa W Fb, F(GFa | b)
|
|
Ga M Gb, FGa & Gb
|
|
|
|
a & XGa, Ga
|
|
a & XG(a&b), (XGb)&(Ga)
|
|
a & b & XG(a&b), G(a&b)
|
|
a & b & X(Ga&Gb), G(a&b)
|
|
a & b & XGa &XG(b), G(a&b)
|
|
a & b & XGa & XGc, b & Ga & XGc
|
|
a & b & X(G(a&d) & b) & X(Gc), b & Ga & X(b & G(c&d))
|
|
a|b|c|X(F(a|b)|F(c)|Gd), F(a|b|c)|XGd
|
|
b|c|X(F(a|b)|F(c)|Gd), b|c|X(F(a|b|c)|Gd)
|
|
|
|
a | (Xa R b) | c, (b W a) | c
|
|
a | (Xa M b) | c, (b U a) | c
|
|
a | (Xa M b) | (Xa R c), (b U a) | (c W a)
|
|
a | (Xa M b) | XF(a), Fa
|
|
# Gb | Fa ?
|
|
a | (Xa R b) | XF(a), (b W a) | Fa
|
|
a & (Xa W b) & c, (b R a) & c
|
|
a & (Xa U b) & c, (b M a) & c
|
|
a & (Xa W b) & (Xa U c), (b R a) & (c M a)
|
|
a & (Xa W b) & XGa, Ga
|
|
# Fb & Ga ?
|
|
a & (Xa U b) & XGa, (b M a) & Ga
|
|
a|(c&b&X((b&c) U a))|d, ((b&c) U a)|d
|
|
a|(c&X((b&c) W a)&b)|d, ((b&c) W a)|d
|
|
a&(c|b|X((b|c) M a))&d, ((b|c) M a)&d
|
|
a&(c|X((b|c) R a)|b)&d, ((b|c) R a)&d
|
|
g R (f|g|h), (f|h) W g
|
|
g M (f|g|h), (f|h) U g
|
|
g U (f&g&h), (f&h) M g
|
|
g W (f&g&h), (f&h) R g
|
|
|
|
# Syntactic implication
|
|
(a & b) R (a R c), (a & b)R c
|
|
a R ((a & b) R c), (a & b)R c
|
|
a R ((a & b) M c), (a & b)M c
|
|
a M ((a & b) M c), (a & b)M c
|
|
(a & b) M (a R c), (a & b)M c
|
|
(a & b) M (a M c), (a & b)M c
|
|
|
|
a U ((a & b) U c), a U c
|
|
(a&c) U (b R (c U d)), b R (c U d)
|
|
(a&c) U (b R (c W d)), b R (c W d)
|
|
(a&c) U (b M (c U d)), b M (c U d)
|
|
(a&c) U (b M (c W d)), b M (c W d)
|
|
|
|
(a R c) R (b & a), c R (b & a)
|
|
(a M c) R (b & a), c R (b & a)
|
|
|
|
a W ((a&b) U c), a W c
|
|
a W ((a&b) W c), a W c
|
|
|
|
(a M c) M (b&a), c M (b&a)
|
|
|
|
((a&c) U b) U c, b U c
|
|
((a&c) W b) U c, b U c
|
|
((a&c) U b) W c, b W c
|
|
((a&c) W b) W c, b W c
|
|
(a R b) R (c&a), b R (c&a)
|
|
(a M b) R (c&a), b R (c&a)
|
|
(a R b) M (c&a), b M (c&a)
|
|
(a M b) M (c&a), b M (c&a)
|
|
|
|
(a R (b&c)) R (c), (a&b&c) R c
|
|
(a M (b&c)) R (c), (a&b&c) R c
|
|
# not reduced
|
|
(a R (b&c)) M (c), (a R (b&c)) M (c)
|
|
(a M (b&c)) M (c), (a&b&c) M c
|
|
(a W (c&b)) W b, (a W (c&b)) | b
|
|
(a U (c&b)) W b, (a U (c&b)) | b
|
|
(a U (c&b)) U b, (a U (c&b)) | b
|
|
# not reduced
|
|
(a W (c&b)) U b, (a W (c&b)) U b
|
|
|
|
# Eventuality and universality class reductions
|
|
Fa M b, Fa & b
|
|
GFa M b, GFa & b
|
|
|
|
G(a & XFb), G(a & Fb)
|
|
G(a & XF(b & XFc & Fd)), G(a & Fb & Fc & Fd)
|
|
GF(a & XF(b & Fc)), G(Fa & Fb & Fc)
|
|
F(a | XGb), F(a | Gb)
|
|
F(a | XG(b | XGc | Gd)), F(a | Gb | Gc | Gd)
|
|
FG(a | XG(b | Gc)), F(Ga | Gb | Gc)
|
|
|
|
Fa|Xb|GFc, Fa | X(b|GFc)
|
|
Fa|GFc, F(a|GFc)
|
|
FGa|GFc, F(Ga|GFc)
|
|
Ga&Xb&FGc, Ga & X(b&FGc)
|
|
Ga&Xb&GFc, Ga & X(b&GFc)
|
|
Ga&GFc, G(a&Fc)
|
|
G(a|b|GFc|GFd|FGe|FGf), G(a|b)|GF(c|d)|F(Ge|Gf)
|
|
G(a|b)|GFc|GFd|FGe|FGf, G(a|b)|GF(c|d)|F(Ge|Gf)
|
|
X(a|b)|GFc|GFd|FGe|FGf, X(a|b|GF(c|d)|F(Ge|Gf))
|
|
Xa&Xb&GFc&GFd&Ge, X(a&b&G(Fc&Fd))&Ge
|
|
|
|
# F comes in front when possible...
|
|
GFc|GFd|FGe|FGf, F(GF(c|d)|Ge|Gf)
|
|
G(GFc|GFd|FGe|FGf), F(GF(c|d)|Ge|Gf)
|
|
|
|
# Because reduccmp will translate the formula,
|
|
# this also check for an old bug in ltl2tgba_fm.
|
|
{(c&!c)[->0..1]}!, 0
|
|
|
|
# Tricky case that used to break the translator,
|
|
# because it was translating closer on-the-fly
|
|
# without pruning the rational automaton.
|
|
{(c&!c)[=2]}, 0
|
|
|
|
{a && b && c*} <>-> d, a&b&c&d
|
|
{a && b && c[*1..3]} <>-> d, a&b&c&d
|
|
{a && b && c[->0..2]} <>-> d, a&b&c&d
|
|
{a && b && c[+]} <>-> d, a&b&c&d
|
|
{a && b && c[=1]} <>-> d, a&b&c&d
|
|
{a && b && d[=2]} <>-> d, 0
|
|
{a && b && d[*2..]} <>-> d, 0
|
|
{a && b && d[->2..4]} <>-> d, 0
|
|
{a && { c* : b* : (g|h)*}} <>-> d, a & c & b & (g | h) & d
|
|
{a && {b;c}} <>-> d, 0
|
|
{a && {(b;c):e}} <>-> d, 0
|
|
# until better
|
|
{a && {b*;c*}} <>-> d, {a && {b*|c*}} <>-> d
|
|
# until better
|
|
{a && {(b*;c*):e}} <>-> d, {a && {b*|c*} && e} <>-> d
|
|
{a && {b*;c}} <>-> d, a & c & d
|
|
{a && {(b*;c):e}} <>-> d, a & c & d & e
|
|
{a && {b;c*}} <>-> d, a & b & d
|
|
{a && {(b;c*):e}} <>-> d, a & b & d & e
|
|
{{{b1;r1*}&&{b2;r2*}};c}, b1&b2&X{{r1*&&r2*};c}
|
|
{{b1:r1*}&&{b2:r2*}}, {{b1&&b2}:{r1*&&r2*}}
|
|
{{r1*;b1}&&{r2*;b2}}, {{r1*&&r2*};{b1&&b2}}
|
|
{{r1*:b1}&&{r2*:b2}}, {{r1*&&r2*}:{b1&&b2}}
|
|
{{a;b*;c}&&{d;e*}&&{f*;g}&&{h*}}, {{f*;g}&&{h*}&&{{a&&d};{e* && {b*;c}}}}
|
|
{{{b1;r1*}&{b2;r2*}};c}, b1&b2&X{{r1*&r2*};c}
|
|
{{b1:(r1;x1*)}&{b2:(r2;x2*)}}, {{b1&&b2}:{{r1&&r2};{x1*&x2*}}}
|
|
# Not reduced
|
|
{{b1:r1*}&{b2:r2*}}, {{b1:r1*}&{b2:r2*}}
|
|
# Not reduced
|
|
{{r1*;b1}&{r2*;b2}}, {{r1*;b1}&{r2*;b2}}
|
|
# Not reduced
|
|
{{r1*:b1}&{r2*:b2}}, {{r1*:b1}&{r2*:b2}}
|
|
{{a;b*;c}&{d;e*}&{f*;g}&{h*}}, {{f*;g}&{h*}&{{a&&d};{e* & {b*;c}}}}
|
|
{a;(b*;c*;([*0]+{d;e}))*}!, {a;{b|c|{d;e}}*}!
|
|
{a&b&c*}|->!Xb, (X!b | !(a & b)) & (!(a & b) | !c | X(!c R !b))
|
|
{[*]}[]->b, Gb
|
|
{a;[*]}[]->b, Gb | !a
|
|
{[*];a}[]->b, G(b | !a)
|
|
{a;b;[*]}[]->c, !a | X(!b | Gc)
|
|
{a;a;[*]}[]->c, !a | X(!a | Gc)
|
|
{s[*]}[]->b, b W !s
|
|
{s[+]}[]->b, b W !s
|
|
{s[*2..]}[]->b, !s | X(b W !s)
|
|
{a;b*;c;d*}[]->e, !a | X(!b R ((e & X(e W !d)) | !c))
|
|
{a:b*:c:d*}[]->e, !a | ((!c | (e W !d)) W !b)
|
|
{a|b*|c|d*}[]->e, (e | !(a | c)) & (e W !b) & (e W !d)
|
|
{{[*0]|a};b;{[*0]|a};c;e[*]}[]->f,{{[*0]|a};b;{[*0]|a}}[]->X((f&X(f W !e))|!c)
|
|
{(a[*]|b)[*0..1];c}, {{b | a[*]};c}
|
|
{{a|b*};1}, 1
|
|
!{{a|b*};1}, 0
|
|
{{a|b[+]};1}, a|b
|
|
!{{a|b[+]};1}, !a&!b
|
|
{{{a|b[+]}&c[*]};1}, {{a|b[+]}&c[*]}
|
|
!{{{a|b[+]}&c[*]};1}, !{{a|b[+]}&c[*]}
|
|
|
|
{a&b&c*}<>->!Xb, (a & b & X!b) | (a & b & c & X(c U !b))
|
|
{[*]}<>->b, Fb
|
|
{a;[*]}<>->b, Fb & a
|
|
{[*];a}<>->b, F(a & b)
|
|
{a;b;[*]}<>->c, a & X(b & Fc)
|
|
{a;a;[*]}<>->c, a & X(a & Fc)
|
|
{s[*]}<>->b, b M s
|
|
{s[+]}<>->b, b M s
|
|
{s[*2..]}<>->b, s & X(b M s)
|
|
{1:a*}!, a
|
|
{(1;1):a*}!, Xa
|
|
{a;b*;c;d*}<>->e, a & X(b U (c & (e | X(e M d))))
|
|
{a:b*:c:d*}<>->e, a & ((c & (e M d)) M b)
|
|
{a|b*|c|d*}<>->e, ((a | c) & e) | (e M b) | (e M d)
|
|
{{[*0]|a};b;{[*0]|a};c;e[*]}<>->f, {{[*0]|a};b;{[*0]|a}}<>->X(c&(f|X(f M e)))
|
|
{a;b[*];c[*];e;f*}, a & X({b*;c*;e})
|
|
{a;b*;(a* && (b;c));c*}, a & X({b*;(a* && (b;c))})
|
|
{a;a;b[*2..];b}, a & X(a & X(b & X(b & Xb)))
|
|
!{a;a;b[*2..];b}, !a | X(!a | X(!b | X(!b | X!b)))
|
|
!{a;c[*];e;f*}, !a | X!{c[*];e}
|
|
!{a;b*;(a* && (b;c));c*}, !a | X(!{b*;(a* && (b;c))})
|
|
{(a;c*;d)|(b;c)}, (a & X{c*;d}) | (b & Xc)
|
|
!{(a;c*;d)|(b;c)}, (X(!{c*;d}) | !a) & (X!c | !b)
|
|
(Xc R b) & (Xc W 0), b & XGc
|
|
{{c*|1}[*0..1]}<>-> v, v | (v M c)
|
|
{{b*;c*}[*3..5]}<>-> v, {{b*;c*}[*1..5]} <>-> v
|
|
{{b*&c*}[*3..5]}<>-> v, {{b[+]|c[+]}[*1..5]} <>-> v
|
|
{((a*;b)+[*0])[*4..6]}!, {((a*;b))[*1..6]}!
|
|
# issue 81
|
|
{e[*0..5]}<>->f, {e[*1..5]}<>->f
|
|
{e[*0..5]}[]->f, {e[*1..5]}[]->f
|
|
{(e+[*0])[*0..5]}[]->f, {e[*1..5]}[]->f
|
|
# issue 185
|
|
GF(a && GF(b) && c), G(F(a & c) & Fb)
|
|
# not reduced
|
|
{a;(b[*2..4];c*;([*0]+{d;e}))*}!, {a;(b[*2..4];c*;([*0]+{d;e}))*}!
|
|
{c[*];e[*]}[]-> a, {c[*];e[*]}[]-> a
|
|
EOF
|
|
|
|
run 0 ../reduccmp nottau.txt
|
|
run 0 ../reductaustr common.txt
|