Fixes #246. * bin/genltl.cc: Implement it. * bin/man/genltl.x, doc/org/genltl.org, NEWS: Document it. * tests/core/ltl2tgba2.test: Test it.
337 lines
15 KiB
Org Mode
337 lines
15 KiB
Org Mode
# -*- coding: utf-8 -*-
|
|
#+TITLE: =genltl=
|
|
#+DESCRIPTION: Spot command-line tool that generates LTL formulas from known patterns
|
|
#+SETUPFILE: setup.org
|
|
#+HTML_LINK_UP: tools.html
|
|
|
|
This tool outputs LTL formulas that either comes from named lists of
|
|
formulas, or from scalable patterns.
|
|
|
|
These patterns are usually taken from the literature (see the
|
|
[[./man/genltl.1.html][=genltl=]](1) man page for references). Sometimes the same pattern is
|
|
given different names in different papers, so we alias different
|
|
option names to the same pattern.
|
|
|
|
#+BEGIN_SRC sh :results verbatim :exports results
|
|
genltl --help | sed -n '/Pattern selection:/,/^$/p' | sed '1d;$d'
|
|
#+END_SRC
|
|
#+RESULTS:
|
|
#+begin_example
|
|
--and-f=RANGE, --gh-e=RANGE
|
|
F(p1)&F(p2)&...&F(pn)
|
|
--and-fg=RANGE FG(p1)&FG(p2)&...&FG(pn)
|
|
--and-gf=RANGE, --ccj-phi=RANGE, --gh-c2=RANGE
|
|
GF(p1)&GF(p2)&...&GF(pn)
|
|
--ccj-alpha=RANGE F(p1&F(p2&F(p3&...F(pn)))) &
|
|
F(q1&F(q2&F(q3&...F(qn))))
|
|
--ccj-beta=RANGE F(p&X(p&X(p&...X(p)))) & F(q&X(q&X(q&...X(q))))
|
|
--ccj-beta-prime=RANGE F(p&(Xp)&(XXp)&...(X...X(p))) &
|
|
F(q&(Xq)&(XXq)&...(X...X(q)))
|
|
--dac-patterns[=RANGE], --spec-patterns[=RANGE]
|
|
Dwyer et al. [FMSP'98] Spec. Patterns for LTL
|
|
(range should be included in 1..55)
|
|
--eh-patterns[=RANGE] Etessami and Holzmann [Concur'00] patterns (range
|
|
should be included in 1..12)
|
|
--gh-q=RANGE (F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))
|
|
--gh-r=RANGE (GF(p1)|FG(p2))&(GF(p2)|FG(p3))&...
|
|
&(GF(pn)|FG(p{n+1}))
|
|
--go-theta=RANGE !((GF(p1)&GF(p2)&...&GF(pn)) -> G(q->F(r)))
|
|
--hkrss-patterns[=RANGE], --liberouter-patterns[=RANGE]
|
|
Holeček et al. patterns from the Liberouter
|
|
project (range should be included in 1..55)
|
|
--kr-n=RANGE linear formula with doubly exponential DBA
|
|
--kr-nlogn=RANGE quasilinear formula with doubly exponential DBA
|
|
--kv-psi=RANGE, --kr-n2=RANGE
|
|
quadratic formula with doubly exponential DBA
|
|
--or-fg=RANGE, --ccj-xi=RANGE
|
|
FG(p1)|FG(p2)|...|FG(pn)
|
|
--or-g=RANGE, --gh-s=RANGE G(p1)|G(p2)|...|G(pn)
|
|
--or-gf=RANGE, --gh-c1=RANGE
|
|
GF(p1)|GF(p2)|...|GF(pn)
|
|
--r-left=RANGE (((p1 R p2) R p3) ... R pn)
|
|
--r-right=RANGE (p1 R (p2 R (... R pn)))
|
|
--rv-counter=RANGE n-bit counter
|
|
--rv-counter-carry=RANGE n-bit counter w/ carry
|
|
--rv-counter-carry-linear=RANGE
|
|
n-bit counter w/ carry (linear size)
|
|
--rv-counter-linear=RANGE n-bit counter (linear size)
|
|
--sb-patterns[=RANGE] Somenzi and Bloem [CAV'00] patterns (range should
|
|
be included in 1..27)
|
|
--tv-f1=RANGE G(p -> (q | Xq | ... | XX...Xq)
|
|
--tv-f2=RANGE G(p -> (q | X(q | X(... | Xq)))
|
|
--tv-g1=RANGE G(p -> (q & Xq & ... & XX...Xq)
|
|
--tv-g2=RANGE G(p -> (q & X(q & X(... & Xq)))
|
|
--tv-uu=RANGE G(p1 -> (p1 U (p2 & (p2 U (p3 & (p3 U ...))))))
|
|
--u-left=RANGE, --gh-u=RANGE
|
|
(((p1 U p2) U p3) ... U pn)
|
|
--u-right=RANGE, --gh-u2=RANGE, --go-phi=RANGE
|
|
(p1 U (p2 U (... U pn)))
|
|
#+end_example
|
|
|
|
An example is probably all it takes to understand how this tool works:
|
|
|
|
#+BEGIN_SRC sh :results verbatim :exports both
|
|
genltl --and-gf=1..5 --u-left=1..5
|
|
#+END_SRC
|
|
#+RESULTS:
|
|
#+begin_example
|
|
GFp1
|
|
GFp1 & GFp2
|
|
GFp1 & GFp2 & GFp3
|
|
GFp1 & GFp2 & GFp3 & GFp4
|
|
GFp1 & GFp2 & GFp3 & GFp4 & GFp5
|
|
p1
|
|
p1 U p2
|
|
(p1 U p2) U p3
|
|
((p1 U p2) U p3) U p4
|
|
(((p1 U p2) U p3) U p4) U p5
|
|
#+end_example
|
|
|
|
=genltl= supports the [[file:ioltl.org][common option for output of LTL formulas]], so you
|
|
may output these pattern for various tools.
|
|
|
|
For instance here is the same formulas, but formatted in a way that is
|
|
suitable for being included in a LaTeX table.
|
|
|
|
|
|
#+BEGIN_SRC sh :results verbatim :exports both
|
|
genltl --and-gf=1..5 --u-left=1..5 --latex --format='%F & %L & $%f$ \\'
|
|
#+END_SRC
|
|
#+RESULTS:
|
|
#+begin_example
|
|
and-gf & 1 & $\G \F p_{1}$ \\
|
|
and-gf & 2 & $\G \F p_{1} \land \G \F p_{2}$ \\
|
|
and-gf & 3 & $\G \F p_{1} \land \G \F p_{2} \land \G \F p_{3}$ \\
|
|
and-gf & 4 & $\G \F p_{1} \land \G \F p_{2} \land \G \F p_{3} \land \G \F p_{4}$ \\
|
|
and-gf & 5 & $\G \F p_{1} \land \G \F p_{2} \land \G \F p_{3} \land \G \F p_{4} \land \G \F p_{5}$ \\
|
|
u-left & 1 & $p_{1}$ \\
|
|
u-left & 2 & $p_{1} \U p_{2}$ \\
|
|
u-left & 3 & $(p_{1} \U p_{2}) \U p_{3}$ \\
|
|
u-left & 4 & $((p_{1} \U p_{2}) \U p_{3}) \U p_{4}$ \\
|
|
u-left & 5 & $(((p_{1} \U p_{2}) \U p_{3}) \U p_{4}) \U p_{5}$ \\
|
|
#+end_example
|
|
|
|
Note that for the =--lbt= syntax, each formula is relabeled using
|
|
=p0=, =p1=, ... before it is output, when the pattern (like
|
|
=--ccj-alpha=) use different names. Compare:
|
|
|
|
#+BEGIN_SRC sh :results verbatim :exports both
|
|
genltl --ccj-alpha=3
|
|
#+END_SRC
|
|
#+RESULTS:
|
|
: F(F(Fq3 & q2) & q1) & F(F(Fp3 & p2) & p1)
|
|
|
|
with
|
|
|
|
#+BEGIN_SRC sh :results verbatim :exports both
|
|
genltl --ccj-alpha=3 --lbt
|
|
#+END_SRC
|
|
#+RESULTS:
|
|
: & F & p2 F & p1 F p0 F & F & F p3 p4 p5
|
|
|
|
This is because most tools using =lbt='s syntax require atomic
|
|
propositions to have the form =pNN=.
|
|
|
|
|
|
Five options provide lists of unrelated LTL formulas, taken from the
|
|
literature (see the [[./man/genltl.1.html][=genltl=]](1) man page for references):
|
|
=--dac-patterns=, =--eh-patterns=, =--hkrss-patterns=, =--p-patterns=,
|
|
and =--sb-patterns=. With these options, the range is used to select
|
|
a subset of the list of formulas. Without range, all formulas are
|
|
used. Here is the complete list:
|
|
|
|
#+BEGIN_SRC sh :results verbatim :exports both
|
|
genltl --dac --eh --hkrss --p --sb --format=%F:%L,%f
|
|
#+END_SRC
|
|
|
|
#+RESULTS:
|
|
#+begin_example
|
|
dac-patterns:1,G!p0
|
|
dac-patterns:2,Fp0 -> (!p1 U p0)
|
|
dac-patterns:3,G(p0 -> G!p1)
|
|
dac-patterns:4,G((p0 & !p1 & Fp1) -> (!p2 U p1))
|
|
dac-patterns:5,G((p0 & !p1) -> (!p2 W p1))
|
|
dac-patterns:6,Fp0
|
|
dac-patterns:7,!p0 W (!p0 & p1)
|
|
dac-patterns:8,G!p0 | F(p0 & Fp1)
|
|
dac-patterns:9,G((p0 & !p1) -> (!p1 W (!p1 & p2)))
|
|
dac-patterns:10,G((p0 & !p1) -> (!p1 U (!p1 & p2)))
|
|
dac-patterns:11,!p0 W (p0 W (!p0 W (p0 W G!p0)))
|
|
dac-patterns:12,Fp0 -> ((!p0 & !p1) U (p0 | ((!p0 & p1) U (p0 | ((!p0 & !p1) U (p0 | ((!p0 & p1) U (p0 | (!p1 U p0)))))))))
|
|
dac-patterns:13,Fp0 -> (!p0 U (p0 & (!p1 W (p1 W (!p1 W (p1 W G!p1))))))
|
|
dac-patterns:14,G((p0 & Fp1) -> ((!p1 & !p2) U (p1 | ((!p1 & p2) U (p1 | ((!p1 & !p2) U (p1 | ((!p1 & p2) U (p1 | (!p2 U p1))))))))))
|
|
dac-patterns:15,G(p0 -> ((!p1 & !p2) U (p2 | ((p1 & !p2) U (p2 | ((!p1 & !p2) U (p2 | ((p1 & !p2) U (p2 | (!p1 W p2) | Gp1)))))))))
|
|
dac-patterns:16,Gp0
|
|
dac-patterns:17,Fp0 -> (p1 U p0)
|
|
dac-patterns:18,G(p0 -> Gp1)
|
|
dac-patterns:19,G((p0 & !p1 & Fp1) -> (p2 U p1))
|
|
dac-patterns:20,G((p0 & !p1) -> (p2 W p1))
|
|
dac-patterns:21,!p0 W p1
|
|
dac-patterns:22,Fp0 -> (!p1 U (p0 | p2))
|
|
dac-patterns:23,G!p0 | F(p0 & (!p1 W p2))
|
|
dac-patterns:24,G((p0 & !p1 & Fp1) -> (!p2 U (p1 | p3)))
|
|
dac-patterns:25,G((p0 & !p1) -> (!p2 W (p1 | p3)))
|
|
dac-patterns:26,G(p0 -> Fp1)
|
|
dac-patterns:27,Fp0 -> ((p1 -> (!p0 U (!p0 & p2))) U p0)
|
|
dac-patterns:28,G(p0 -> G(p1 -> Fp2))
|
|
dac-patterns:29,G((p0 & !p1 & Fp1) -> ((p2 -> (!p1 U (!p1 & p3))) U p1))
|
|
dac-patterns:30,G((p0 & !p1) -> ((p2 -> (!p1 U (!p1 & p3))) W p1))
|
|
dac-patterns:31,Fp0 -> (!p0 U (!p0 & p1 & X(!p0 U p2)))
|
|
dac-patterns:32,Fp0 -> (!p1 U (p0 | (!p1 & p2 & X(!p1 U p3))))
|
|
dac-patterns:33,G!p0 | (!p0 U ((p0 & Fp1) -> (!p1 U (!p1 & p2 & X(!p1 U p3)))))
|
|
dac-patterns:34,G((p0 & Fp1) -> (!p2 U (p1 | (!p2 & p3 & X(!p2 U p4)))))
|
|
dac-patterns:35,G(p0 -> (Fp1 -> (!p1 U (p2 | (!p1 & p3 & X(!p1 U p4))))))
|
|
dac-patterns:36,F(p0 & XFp1) -> (!p0 U p2)
|
|
dac-patterns:37,Fp0 -> (!(!p0 & p1 & X(!p0 U (!p0 & p2))) U (p0 | p3))
|
|
dac-patterns:38,G!p0 | (!p0 U (p0 & (F(p1 & XFp2) -> (!p1 U p3))))
|
|
dac-patterns:39,G((p0 & Fp1) -> (!(!p1 & p2 & X(!p1 U (!p1 & p3))) U (p1 | p4)))
|
|
dac-patterns:40,G(p0 -> ((!(!p1 & p2 & X(!p1 U (!p1 & p3))) U (p1 | p4)) | G!(p2 & XFp3)))
|
|
dac-patterns:41,G((p0 & XFp1) -> XF(p1 & Fp2))
|
|
dac-patterns:42,Fp0 -> (((p1 & X(!p0 U p2)) -> X(!p0 U (p2 & Fp3))) U p0)
|
|
dac-patterns:43,G(p0 -> G((p1 & XFp2) -> X(!p2 U (p2 & Fp3))))
|
|
dac-patterns:44,G((p0 & Fp1) -> (((p2 & X(!p1 U p3)) -> X(!p1 U (p3 & Fp4))) U p1))
|
|
dac-patterns:45,G(p0 -> (((p1 & X(!p2 U p3)) -> X(!p2 U (p3 & Fp4))) U (p2 | G((p1 & X(!p2 U p3)) -> X(!p2 U (p3 & Fp4))))))
|
|
dac-patterns:46,G(p0 -> F(p1 & XFp2))
|
|
dac-patterns:47,Fp0 -> ((p1 -> (!p0 U (!p0 & p2 & X(!p0 U p3)))) U p0)
|
|
dac-patterns:48,G(p0 -> G(p1 -> (p2 & XFp3)))
|
|
dac-patterns:49,G((p0 & Fp1) -> ((p2 -> (!p1 U (!p1 & p3 & X(!p1 U p4)))) U p1))
|
|
dac-patterns:50,G(p0 -> ((p1 -> (!p2 U (!p2 & p3 & X(!p2 U p4)))) U (p2 | G(p1 -> (p3 & XFp4)))))
|
|
dac-patterns:51,G(p0 -> F(p1 & !p2 & X(!p2 U p3)))
|
|
dac-patterns:52,Fp0 -> ((p1 -> (!p0 U (!p0 & p2 & !p3 & X((!p0 & !p3) U p4)))) U p0)
|
|
dac-patterns:53,G(p0 -> G(p1 -> (p2 & !p3 & X(!p3 U p4))))
|
|
dac-patterns:54,G((p0 & Fp1) -> ((p2 -> (!p1 U (!p1 & p3 & !p4 & X((!p1 & !p4) U p5)))) U p1))
|
|
dac-patterns:55,G(p0 -> ((p1 -> (!p2 U (!p2 & p3 & !p4 & X((!p2 & !p4) U p5)))) U (p2 | G(p1 -> (p3 & !p4 & X(!p4 U p5))))))
|
|
eh-patterns:1,p0 U (p1 & Gp2)
|
|
eh-patterns:2,p0 U (p1 & X(p2 U p3))
|
|
eh-patterns:3,p0 U (p1 & X(p2 & F(p3 & XF(p4 & XF(p5 & XFp6)))))
|
|
eh-patterns:4,F(p0 & XGp1)
|
|
eh-patterns:5,F(p0 & X(p1 & XFp2))
|
|
eh-patterns:6,F(p0 & X(p1 U p2))
|
|
eh-patterns:7,FGp0 | GFp1
|
|
eh-patterns:8,G(p0 -> (p1 U p2))
|
|
eh-patterns:9,G(p0 & XF(p1 & XF(p2 & XFp3)))
|
|
eh-patterns:10,GFp0 & GFp1 & GFp2 & GFp3 & GFp4
|
|
eh-patterns:11,(p0 U (p1 U p2)) | (p1 U (p2 U p0)) | (p2 U (p0 U p1))
|
|
eh-patterns:12,G(p0 -> (p1 U (Gp2 | Gp3)))
|
|
hkrss-patterns:1,G(Fp0 & F!p0)
|
|
hkrss-patterns:2,GFp0 & GF!p0
|
|
hkrss-patterns:3,GF(!(p1 <-> Xp1) | !(p0 <-> Xp0))
|
|
hkrss-patterns:4,GF(!(p1 <-> Xp1) | !(p0 <-> Xp0) | !(p2 <-> Xp2) | !(p3 <-> Xp3))
|
|
hkrss-patterns:5,G!p0
|
|
hkrss-patterns:6,G((p0 -> F!p0) & (!p0 -> Fp0))
|
|
hkrss-patterns:7,G(p0 -> F(p0 & p1))
|
|
hkrss-patterns:8,G(p0 -> F((!p0 & p1 & p2 & p3) -> Fp4))
|
|
hkrss-patterns:9,G(p0 -> F!p1)
|
|
hkrss-patterns:10,G(p0 -> Fp1)
|
|
hkrss-patterns:11,G(p0 -> F(p1 -> Fp2))
|
|
hkrss-patterns:12,G(p0 -> F((p1 & p2) -> Fp3))
|
|
hkrss-patterns:13,G((p0 -> Fp1) & (p2 -> Fp3) & (p4 -> Fp5) & (p6 -> Fp7))
|
|
hkrss-patterns:14,G(!p0 & !p1)
|
|
hkrss-patterns:15,G!(p0 & p1)
|
|
hkrss-patterns:16,G(p0 -> p1)
|
|
hkrss-patterns:17,G((p0 -> !p1) & (p1 -> !p0))
|
|
hkrss-patterns:18,G(!p0 -> (p1 <-> !p2))
|
|
hkrss-patterns:19,G((!p0 & (p1 | p2 | p3)) -> p4)
|
|
hkrss-patterns:20,G((p0 & p1) -> (p2 | !(p3 & p4)))
|
|
hkrss-patterns:21,G((!p0 & p1 & !p2 & !p3 & !p4) -> F(!p5 & !p6 & !p7 & !p8))
|
|
hkrss-patterns:22,G((p0 & p1 & !p2 & !p3 & !p4) -> F(p5 & !p6 & !p7 & !p8))
|
|
hkrss-patterns:23,G(!p0 -> !(p1 & p2 & p3 & p4 & p5))
|
|
hkrss-patterns:24,G(!p0 -> ((p1 & p2 & p3 & p4) -> !p5))
|
|
hkrss-patterns:25,G((p0 & p1) -> (p2 | p3 | !(p4 & p5)))
|
|
hkrss-patterns:26,G((!p0 & (p1 | p2 | p3 | p4)) -> (!p5 <-> p6))
|
|
hkrss-patterns:27,G((p0 & p1) -> (p2 | p3 | p4 | !(p5 & p6)))
|
|
hkrss-patterns:28,G((p0 & p1) -> (p2 | p3 | p4 | p5 | !(p6 & p7)))
|
|
hkrss-patterns:29,G((p0 & p1 & !p2 & Xp2) -> X(p3 | X(!p1 | p3)))
|
|
hkrss-patterns:30,G((p0 & p1 & !p2 & Xp2) -> X(X!p1 | (p2 U (!p2 U (p2 U (!p1 | p3))))))
|
|
hkrss-patterns:31,G(p0 & p1 & !p2 & Xp2) -> X(X!p1 | (p2 U (!p2 U (p2 U (!p1 | p3)))))
|
|
hkrss-patterns:32,G(p0 -> (p1 U (!p1 U (!p2 | p3))))
|
|
hkrss-patterns:33,G(p0 -> (p1 U (!p1 U (p2 | p3))))
|
|
hkrss-patterns:34,G((!p0 & p1) -> Xp2)
|
|
hkrss-patterns:35,G(p0 -> X(p0 | p1))
|
|
hkrss-patterns:36,G((!(p1 <-> Xp1) | !(p0 <-> Xp0) | !(p2 <-> Xp2) | !(p3 <-> Xp3)) -> (X!p4 & X(!(!(p1 <-> Xp1) | !(p0 <-> Xp0) | !(p2 <-> Xp2) | !(p3 <-> Xp3)) U p4)))
|
|
hkrss-patterns:37,G((p0 & !p1 & Xp1 & Xp0) -> (p2 -> Xp3))
|
|
hkrss-patterns:38,G(p0 -> X(!p0 U p1))
|
|
hkrss-patterns:39,G((!p0 & Xp0) -> X((p0 U p1) | Gp0))
|
|
hkrss-patterns:40,G((!p0 & Xp0) -> X(p0 U (p0 & !p1 & X(p0 & p1))))
|
|
hkrss-patterns:41,G((!p0 & Xp0) -> X(p0 U (p0 & !p1 & X(p0 & p1 & (p0 U (p0 & !p1 & X(p0 & p1)))))))
|
|
hkrss-patterns:42,G((p0 & X!p0) -> X(!p0 U (!p0 & !p1 & X(!p0 & p1 & (!p0 U (!p0 & !p1 & X(!p0 & p1)))))))
|
|
hkrss-patterns:43,G((p0 & X!p0) -> X(!p0 U (!p0 & !p1 & X(!p0 & p1 & (!p0 U (!p0 & !p1 & X(!p0 & p1 & (!p0 U (!p0 & !p1 & X(!p0 & p1))))))))))
|
|
hkrss-patterns:44,G((!p0 & Xp0) -> X(!(!p0 & Xp0) U (!p1 & Xp1)))
|
|
hkrss-patterns:45,G(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X!p0)))))))))))
|
|
hkrss-patterns:46,G((Xp0 -> p0) -> (p1 <-> Xp1))
|
|
hkrss-patterns:47,G((Xp0 -> p0) -> ((p1 -> Xp1) & (!p1 -> X!p1)))
|
|
hkrss-patterns:48,!p0 U G!((p1 & p2) | (p3 & p4) | (p2 & p3) | (p2 & p4) | (p1 & p4) | (p1 & p3))
|
|
hkrss-patterns:49,!p0 U p1
|
|
hkrss-patterns:50,(p0 U p1) | Gp0
|
|
hkrss-patterns:51,p0 & XG!p0
|
|
hkrss-patterns:52,XG(p0 -> (G!p1 | (!Xp1 U p2)))
|
|
hkrss-patterns:53,XG((p0 & !p1) -> (G!p1 | (!p1 U p2)))
|
|
hkrss-patterns:54,XG((p0 & p1) -> ((p1 U p2) | Gp1))
|
|
hkrss-patterns:55,Xp0 & G((!p0 & Xp0) -> XXp0)
|
|
p-patterns:1,G(p0 -> Fp1)
|
|
p-patterns:2,(GFp1 & GFp0) -> GFp2
|
|
p-patterns:3,G(p0 -> (p1 & (p2 U p3)))
|
|
p-patterns:4,F(p0 | p1)
|
|
p-patterns:5,GF(p0 | p1)
|
|
p-patterns:6,(p0 U p1) -> ((p2 U p3) | Gp2)
|
|
p-patterns:7,G(p0 -> (!p1 U (p1 U (!p1 & (p2 R !p1)))))
|
|
p-patterns:8,G(p0 -> (p1 R !p2))
|
|
p-patterns:9,G(!p0 -> Fp0)
|
|
p-patterns:10,G(p0 -> F(p1 | p2))
|
|
p-patterns:11,!(!(p0 | p1) U p2) & G(p3 -> !(!(p0 | p1) U p2))
|
|
p-patterns:12,G!p0 -> G!p1
|
|
p-patterns:13,G(p0 -> (G!p1 | (!p2 U p1)))
|
|
p-patterns:14,G(p0 -> (p1 R (p1 | !p2)))
|
|
p-patterns:15,G((p0 & p1) -> (!p1 R (p0 | !p1)))
|
|
p-patterns:16,G(p0 -> F(p1 & p2))
|
|
p-patterns:17,G(p0 -> (!p1 U (p1 U (p1 & p2))))
|
|
p-patterns:18,G(p0 -> (!p1 U (p1 U (!p1 U (p1 U (p1 & p2))))))
|
|
p-patterns:19,GFp0 -> GFp1
|
|
p-patterns:20,GF(p0 | p1) & GF(p1 | p2)
|
|
sb-patterns:1,p0 U p1
|
|
sb-patterns:2,p0 U (p1 U p2)
|
|
sb-patterns:3,!(p0 U (p1 U p2))
|
|
sb-patterns:4,GFp0 -> GFp1
|
|
sb-patterns:5,Fp0 U Gp1
|
|
sb-patterns:6,Gp0 U p1
|
|
sb-patterns:7,!(Fp0 <-> Fp1)
|
|
sb-patterns:8,!(GFp0 -> GFp1)
|
|
sb-patterns:9,!(GFp0 <-> GFp1)
|
|
sb-patterns:10,p0 R (p0 | p1)
|
|
sb-patterns:11,(Xp0 U Xp1) | !X(p0 U p1)
|
|
sb-patterns:12,(Xp0 U p1) | !X(p0 U (p0 & p1))
|
|
sb-patterns:13,G(p0 -> Fp1) & ((Xp0 U p1) | !X(p0 U (p0 & p1)))
|
|
sb-patterns:14,G(p0 -> Fp1) & ((Xp0 U Xp1) | !X(p0 U p1))
|
|
sb-patterns:15,G(p0 -> Fp1)
|
|
sb-patterns:16,!G(p0 -> X(p1 R p2))
|
|
sb-patterns:17,!(FGp0 | FGp1)
|
|
sb-patterns:18,G(Fp0 & Fp1)
|
|
sb-patterns:19,Fp0 & F!p0
|
|
sb-patterns:20,(p0 & Xp1) R X(((p2 U p3) R p0) U (p2 R p0))
|
|
sb-patterns:21,Gp2 | (G(p0 | GFp1) & G(p2 | GF!p1)) | Gp0
|
|
sb-patterns:22,Gp0 | Gp2 | (G(p0 | FGp1) & G(p2 | FG!p1))
|
|
sb-patterns:23,!(Gp2 | (G(p0 | GFp1) & G(p2 | GF!p1)) | Gp0)
|
|
sb-patterns:24,!(Gp0 | Gp2 | (G(p0 | FGp1) & G(p2 | FG!p1)))
|
|
sb-patterns:25,G(p0 | XGp1) & G(p2 | XG!p1)
|
|
sb-patterns:26,G(p0 | (Xp1 & X!p1))
|
|
sb-patterns:27,p0 | (p1 U p0)
|
|
#+end_example
|
|
|
|
Note that ~--sb-patterns=2 --sb-patterns=4 --sb-patterns=21..22~ also
|
|
have their complement formula listed as ~--sb-patterns=3
|
|
--sb-patterns=8 --sb-patterns=23..24~. So if you build the set of
|
|
formula output by =genltl --sb-patterns= plus its negation, it will
|
|
contain only 46 formulas, not 54.
|
|
|
|
#+BEGIN_SRC sh :results verbatim :exports both
|
|
genltl --sb | ltlfilt --uniq --count
|
|
genltl --sb --pos --neg | ltlfilt --uniq --count
|
|
#+END_SRC
|
|
#+RESULTS:
|
|
: 27
|
|
: 46
|
|
|
|
# LocalWords: genltl num toc LTL scalable SRC sed gh pn fg FG gf qn
|
|
# LocalWords: ccj Xp XXp Xq XXq rv GFp lbt utf SETUPFILE html dac
|
|
# LocalWords: Dwyer et al FMSP Etessami Holzmann sb Somenzi Bloem
|
|
# LocalWords: CAV LaTeX Fq Fp pNN Gp XFp XF XGp FGp XG ltlfilt uniq
|