spot/tests/core/reduccmp.test
Alexandre Duret-Lutz ca1c67a73d simplifier: add two new rules
Fixes #354.

* spot/tl/simplify.cc: Implement the rules.
* doc/tl/tl.tex, NEWS: Document them.
* tests/core/reduccmp.test: Add tests.
* tests/core/det.test, tests/core/satmin.test: Adjust.
2018-06-05 08:48:40 +02:00

442 lines
11 KiB
Bash
Executable file

#! /bin/sh
# -*- coding: utf-8 -*-
# Copyright (C) 2009-2014, 2016-2018 Laboratoire de Recherche et
# Developpement de l'Epita (LRDE).
# Copyright (C) 2004, 2006 Laboratoire d'Informatique de Paris 6 (LIP6),
# département Systèmes Répartis Coopératifs (SRC), Université Pierre
# et Marie Curie.
#
# This file is part of Spot, a model checking library.
#
# Spot is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Spot is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Check LTL reductions
. ./defs || exit 1
set -e
cat >common.txt <<EOF
# No reduction
a U b, a U b
a R b, a R b
a & b, a & b
a | b, a | b
a & (a U b), a & (a U b)
a | (a U b), a | (a U b)
# Syntactic reduction
a & (!b R !a), false
(!b R !a) & a, false
a & (!b R !a) & c, false
c & (!b R !a) & a, false
a & (!b M !a), false
(!b M !a) & a, false
a & (!b M !a) & c, false
c & (!b M !a) & a, false
a & (b U a), a
(b U a) & a, a
a | (b U a), (b U a)
(b U a) | a, (b U a)
a U (b U a), (b U a)
a & (b W a), a
(b W a) & a, a
a | (b W a), (b W a)
(b W a) | a, (b W a)
a W (b W a), (b W a)
a & (b U a) & a, a
a & (b U a) & a, a
a | (b U a) | a, (b U a)
a | (b U a) | a, (b U a)
a U (b U a), (b U a)
a & c & (b W a), a & c
a & d & c & e & f & g & b & (x W (g & f)), a&b&c&d&e&f&g
(F!a & X(!b R a)) | (Ga & X(b U !a)), F!a & X(!b R a)
d & ((!a & d) | (a & d)), (!a & d) | (a & d)
a <-> !a, 0
a <-> a, 1
a ^ a, 0
a ^ !a, 1
GFa | FGa, GFa
XXGa | GFa, GFa
GFa & FGa, FGa
XXGa & GFa, XXGa
# Basic reductions
X(true), true
X(false), false
F(true), true
F(false), false
XGF(f), GF(f)
# not reduced
a R (b W G(c)), a R (b W G(c))
# not reduced.
a M ((a&b) R c), a M ((a&b) R c)
# not reduced.
(a&b) W (a U c), (a&b) W (a U c)
# Eventuality and universality class reductions
FFa, Fa
FGFa, GFa
b U Fa, Fa
b U GFa, GFa
Ga, Ga
a U XXXFb, XXXFb
# issue 93
GFa U Ga, FGa
FGa U Ga, FGa
GFa U a, GFa U a
Fa U a, Fa
GFa R Fa, GFa
FGa R Fa, GFa
FGa R a, FGa R a
Ga R a, Ga
# issue 293
F(G!p1 | p1) W Fp1, 1
F(p1 | G!p1) W Fp1, 1
F(Fp1 -> p1) W Fp1, 1
G(Fp0 | (p0 M (Fp0 W p0))), GFp0
G((p0 M (Fp0 W p0)) | Fp0), GFp0
G((Fp0) W ((p0 M (Fp0 W p0)))), GFp0
!G((Fp0) W ((p0 M (Fp0 W p0)))), FG!p0
EOF
cp common.txt nottau.txt
cat >>nottau.txt<<EOF
G(true), true
G(false), false
a M 1, Fa
a W 0, Ga
1 U a, Fa
0 R a, Ga
G(a R b), G(b)
FX(a), XF(a)
GX(a), XG(a)
(Xf W 0) | X(f W 0), XGf
XFa & FXa, XFa
GF(a | Xb), GF(a | b)
GF(a | Fb), GF(a | b)
GF(Xa | Fb), GF(a | b)
FG(a & Xb), FG(a & b)
FG(a & Gb), FG(a & b)
FG(Xa & Gb), FG(a & b)
X(a) U X(b), X(a U b)
X(a) R X(b), X(a R b)
Xa & Xb, X(a & b)
Xa | Xb, X(a | b)
X(a) M X(b), X(a M b)
X(a) W X(b), X(a W b)
X(a) M b, b & X(b U a)
X(a) R b, b & X(b W a)
X(a) U b, b | X(b M a)
X(a) W b, b | X(b R a)
(a U b) & (c U b), (a & c) U b
(a R b) & (a R c), a R (b & c)
(a U b) | (a U c), a U (b | c)
(a R b) | (c R b), (a | c) R b
Xa & FGb, X(a & FGb)
Xa | FGb, X(a | FGb)
Xa & GFb, X(a & GFb)
Xa | GFb, X(a | GFb)
# The following is not reduced to F(a) & GFb. because
# (1) is does not help the translate the formula into a
# smaller automaton, and ...
F(a & GFb), F(a & GFb)
# (2) ... it would hinder this useful reduction (that helps to
# produce a smaller automaton)
F(f1 & GF(f2)) | F(a & GF(b)), F((f1&GFf2)|(a&GFb))
# FIXME: Don't we want the opposite rewriting?
# rewriting Fa & GFb as F(a & GFb) seems better, but
# it not clear how that scales to Fa & Fb & GFc...
Fa & GFb, Fa & GFb
G(a | GFb), Ga | GFb
# The following is not reduced to F(a & c) & GF(b) for the same
# reason as above.
F(a & GFb & c), F(a & GFb & c)
G(a | GFb | c), G(a | c) | GFb
GFa <=> GFb, F(G(Fa&Fb)|G(!a&!b))
FGa | (GFa & GFb), F(Ga | (G(Fa & Fb)))
Gb W a, Gb|a
a W Fb, a W Fb
Fb M Fa, Fa & Fb
a M Gb, a M Gb
GFa R Xf, X(GFa R f)
GFa U Xf, X(GFa U f)
a U (b | G(a) | c), a W (b | c)
a U (G(a)), Ga
(a U b) | (a W c), a W (b | c)
(a U b) | Ga, a W b
a R (b & F(a) & c), a M (b & c)
a R (F(a)), Fa
(a R b) & (a M c), a M (b & c)
(a R b) & Fa, a M b
(a U b) & (c W b), (a & c) U b
(a W b) & (c W b), (a & c) W b
(a R b) | (c M b), (a | c) R b
(a M b) | (c M b), (a | c) M b
(a R b) | Gb, a R b
(a M b) | Gb, a R b
(a U b) & Fb, a U b
(a W b) & Fb, a U b
(a M b) | Gb | (c M b), (a | c) R b
GFGa, FGa
b R Ga, Ga
b R FGa, FGa
G(!a M a) M 1, 0
G(!a M a) U 1, 1
a R (!a M a), 0
a W (!a M a), Ga
F(a U b), Fb
F(a M b), F(a & b)
G(a R b), Gb
G(a W b), G(a | b)
Fa W Fb, F(GFa | b)
Ga M Gb, FGa & Gb
a & XGa, Ga
a & XG(a&b), (XGb)&(Ga)
a & b & XG(a&b), G(a&b)
a & b & X(Ga&Gb), G(a&b)
a & b & XGa &XG(b), G(a&b)
a & b & XGa & XGc, b & Ga & XGc
a & b & X(G(a&d) & b) & X(Gc), b & Ga & X(b & G(c&d))
a|b|c|X(F(a|b)|F(c)|Gd), F(a|b|c)|XGd
b|c|X(F(a|b)|F(c)|Gd), b|c|X(F(a|b|c)|Gd)
a | (Xa R b) | c, (b W a) | c
a | (Xa M b) | c, (b U a) | c
a | (Xa M b) | (Xa R c), (b U a) | (c W a)
a | (Xa M b) | XF(a), Fa
# Gb | Fa ?
a | (Xa R b) | XF(a), (b W a) | Fa
a & (Xa W b) & c, (b R a) & c
a & (Xa U b) & c, (b M a) & c
a & (Xa W b) & (Xa U c), (b R a) & (c M a)
a & (Xa W b) & XGa, Ga
# Fb & Ga ?
a & (Xa U b) & XGa, (b M a) & Ga
a|(c&b&X((b&c) U a))|d, ((b&c) U a)|d
a|(c&X((b&c) W a)&b)|d, ((b&c) W a)|d
a&(c|b|X((b|c) M a))&d, ((b|c) M a)&d
a&(c|X((b|c) R a)|b)&d, ((b|c) R a)&d
g R (f|g|h), (f|h) W g
g M (f|g|h), (f|h) U g
g U (f&g&h), (f&h) M g
g W (f&g&h), (f&h) R g
# Syntactic implication
(a & b) R (a R c), (a & b)R c
a R ((a & b) R c), (a & b)R c
a R ((a & b) M c), (a & b)M c
a M ((a & b) M c), (a & b)M c
(a & b) M (a R c), (a & b)M c
(a & b) M (a M c), (a & b)M c
a U ((a & b) U c), a U c
(a&c) U (b R (c U d)), b R (c U d)
(a&c) U (b R (c W d)), b R (c W d)
(a&c) U (b M (c U d)), b M (c U d)
(a&c) U (b M (c W d)), b M (c W d)
(a R c) R (b & a), c R (b & a)
(a M c) R (b & a), c R (b & a)
a W ((a&b) U c), a W c
a W ((a&b) W c), a W c
(a M c) M (b&a), c M (b&a)
((a&c) U b) U c, b U c
((a&c) W b) U c, b U c
((a&c) U b) W c, b W c
((a&c) W b) W c, b W c
(a R b) R (c&a), b R (c&a)
(a M b) R (c&a), b R (c&a)
(a R b) M (c&a), b M (c&a)
(a M b) M (c&a), b M (c&a)
(a R (b&c)) R (c), (a&b&c) R c
(a M (b&c)) R (c), (a&b&c) R c
# not reduced
(a R (b&c)) M (c), (a R (b&c)) M (c)
(a M (b&c)) M (c), (a&b&c) M c
(a W (c&b)) W b, (a W (c&b)) | b
(a U (c&b)) W b, (a U (c&b)) | b
(a U (c&b)) U b, (a U (c&b)) | b
# not reduced
(a W (c&b)) U b, (a W (c&b)) U b
# Eventuality and universality class reductions
Fa M b, Fa & b
GFa M b, GFa & b
G(a & XFb), G(a & Fb)
G(a & XF(b & XFc & Fd)), G(a & Fb & Fc & Fd)
GF(a & XF(b & Fc)), G(Fa & Fb & Fc)
F(a | XGb), F(a | Gb)
F(a | XG(b | XGc | Gd)), F(a | Gb | Gc | Gd)
FG(a | XG(b | Gc)), F(Ga | Gb | Gc)
Fa|Xb|GFc, Fa | X(b|GFc)
Fa|GFc, F(a|GFc)
FGa|GFc, F(Ga|GFc)
Ga&Xb&FGc, Ga & X(b&FGc)
Ga&Xb&GFc, Ga & X(b&GFc)
Ga&GFc, G(a&Fc)
G(a|b|GFc|GFd|FGe|FGf), G(a|b)|GF(c|d)|F(Ge|Gf)
G(a|b)|GFc|GFd|FGe|FGf, G(a|b)|GF(c|d)|F(Ge|Gf)
X(a|b)|GFc|GFd|FGe|FGf, X(a|b|GF(c|d)|F(Ge|Gf))
Xa&Xb&GFc&GFd&Ge, X(a&b&G(Fc&Fd))&Ge
# F comes in front when possible...
GFc|GFd|FGe|FGf, F(GF(c|d)|Ge|Gf)
G(GFc|GFd|FGe|FGf), F(GF(c|d)|Ge|Gf)
# Because reduccmp will translate the formula,
# this also check for an old bug in ltl2tgba_fm.
{(c&!c)[->0..1]}!, 0
# Tricky case that used to break the translator,
# because it was translating closer on-the-fly
# without pruning the rational automaton.
{(c&!c)[=2]}, 0
{a && b && c*} <>-> d, a&b&c&d
{a && b && c[*1..3]} <>-> d, a&b&c&d
{a && b && c[->0..2]} <>-> d, a&b&c&d
{a && b && c[+]} <>-> d, a&b&c&d
{a && b && c[=1]} <>-> d, a&b&c&d
{a && b && d[=2]} <>-> d, 0
{a && b && d[*2..]} <>-> d, 0
{a && b && d[->2..4]} <>-> d, 0
{a && { c* : b* : (g|h)*}} <>-> d, a & c & b & (g | h) & d
{a && {b;c}} <>-> d, 0
{a && {(b;c):e}} <>-> d, 0
# until better
{a && {b*;c*}} <>-> d, {a && {b*|c*}} <>-> d
# until better
{a && {(b*;c*):e}} <>-> d, {a && {b*|c*} && e} <>-> d
{a && {b*;c}} <>-> d, a & c & d
{a && {(b*;c):e}} <>-> d, a & c & d & e
{a && {b;c*}} <>-> d, a & b & d
{a && {(b;c*):e}} <>-> d, a & b & d & e
{{{b1;r1*}&&{b2;r2*}};c}, b1&b2&X{{r1*&&r2*};c}
{{b1:r1*}&&{b2:r2*}}, {{b1&&b2}:{r1*&&r2*}}
{{r1*;b1}&&{r2*;b2}}, {{r1*&&r2*};{b1&&b2}}
{{r1*:b1}&&{r2*:b2}}, {{r1*&&r2*}:{b1&&b2}}
{{a;b*;c}&&{d;e*}&&{f*;g}&&{h*}}, {{f*;g}&&{h*}&&{{a&&d};{e* && {b*;c}}}}
{{{b1;r1*}&{b2;r2*}};c}, b1&b2&X{{r1*&r2*};c}
{{b1:(r1;x1*)}&{b2:(r2;x2*)}}, {{b1&&b2}:{{r1&&r2};{x1*&x2*}}}
# Not reduced
{{b1:r1*}&{b2:r2*}}, {{b1:r1*}&{b2:r2*}}
# Not reduced
{{r1*;b1}&{r2*;b2}}, {{r1*;b1}&{r2*;b2}}
# Not reduced
{{r1*:b1}&{r2*:b2}}, {{r1*:b1}&{r2*:b2}}
{{a;b*;c}&{d;e*}&{f*;g}&{h*}}, {{f*;g}&{h*}&{{a&&d};{e* & {b*;c}}}}
{a;(b*;c*;([*0]+{d;e}))*}!, {a;{b|c|{d;e}}*}!
{a&b&c*}|->!Xb, (X!b | !(a & b)) & (!(a & b) | !c | X(!c R !b))
{[*]}[]->b, Gb
{a;[*]}[]->b, Gb | !a
{[*];a}[]->b, G(b | !a)
{a;b;[*]}[]->c, !a | X(!b | Gc)
{a;a;[*]}[]->c, !a | X(!a | Gc)
{s[*]}[]->b, b W !s
{s[+]}[]->b, b W !s
{s[*2..]}[]->b, !s | X(b W !s)
{a;b*;c;d*}[]->e, !a | X(!b R ((e & X(e W !d)) | !c))
{a:b*:c:d*}[]->e, !a | ((!c | (e W !d)) W !b)
{a|b*|c|d*}[]->e, (e | !(a | c)) & (e W !b) & (e W !d)
{{[*0]|a};b;{[*0]|a};c;e[*]}[]->f,{{[*0]|a};b;{[*0]|a}}[]->X((f&X(f W !e))|!c)
{(a[*]|b)[*0..1];c}, {{b | a[*]};c}
{{a|b*};1}, 1
!{{a|b*};1}, 0
{{a|b[+]};1}, a|b
!{{a|b[+]};1}, !a&!b
{{{a|b[+]}&c[*]};1}, {{a|b[+]}&c[*]}
!{{{a|b[+]}&c[*]};1}, !{{a|b[+]}&c[*]}
{a&b&c*}<>->!Xb, (a & b & X!b) | (a & b & c & X(c U !b))
{[*]}<>->b, Fb
{a;[*]}<>->b, Fb & a
{[*];a}<>->b, F(a & b)
{a;b;[*]}<>->c, a & X(b & Fc)
{a;a;[*]}<>->c, a & X(a & Fc)
{s[*]}<>->b, b M s
{s[+]}<>->b, b M s
{s[*2..]}<>->b, s & X(b M s)
{1:a*}!, a
{(1;1):a*}!, Xa
{a;b*;c;d*}<>->e, a & X(b U (c & (e | X(e M d))))
{a:b*:c:d*}<>->e, a & ((c & (e M d)) M b)
{a|b*|c|d*}<>->e, ((a | c) & e) | (e M b) | (e M d)
{{[*0]|a};b;{[*0]|a};c;e[*]}<>->f, {{[*0]|a};b;{[*0]|a}}<>->X(c&(f|X(f M e)))
{a;b[*];c[*];e;f*}, a & X({b*;c*;e})
{a;b*;(a* && (b;c));c*}, a & X({b*;(a* && (b;c))})
{a;a;b[*2..];b}, a & X(a & X(b & X(b & Xb)))
!{a;a;b[*2..];b}, !a | X(!a | X(!b | X(!b | X!b)))
!{a;c[*];e;f*}, !a | X!{c[*];e}
!{a;b*;(a* && (b;c));c*}, !a | X(!{b*;(a* && (b;c))})
{(a;c*;d)|(b;c)}, (a & X{c*;d}) | (b & Xc)
!{(a;c*;d)|(b;c)}, (X(!{c*;d}) | !a) & (X!c | !b)
(Xc R b) & (Xc W 0), b & XGc
{{c*|1}[*0..1]}<>-> v, v | (v M c)
{{b*;c*}[*3..5]}<>-> v, {{b*;c*}[*1..5]} <>-> v
{{b*&c*}[*3..5]}<>-> v, {{b[+]|c[+]}[*1..5]} <>-> v
{((a*;b)+[*0])[*4..6]}!, {((a*;b))[*1..6]}!
# issue 81
{e[*0..5]}<>->f, {e[*1..5]}<>->f
{e[*0..5]}[]->f, {e[*1..5]}[]->f
{(e+[*0])[*0..5]}[]->f, {e[*1..5]}[]->f
# issue 185
GF(a && GF(b) && c), G(F(a & c) & Fb)
# not reduced
{a;(b[*2..4];c*;([*0]+{d;e}))*}!, {a;(b[*2..4];c*;([*0]+{d;e}))*}!
{c[*];e[*]}[]-> a, {c[*];e[*]}[]-> a
EOF
run 0 ../reduccmp nottau.txt
run 0 ../reductaustr common.txt