Conditionally inherit from acss_statistics. * src/tgbaalgos/magic.cc, src/tgbaalgos/se05.cc, src/tgbaalgos/tau03.cc, src/tgbaalgos/tau03opt.cc: Define Has_Size in all heaps.
485 lines
14 KiB
C++
485 lines
14 KiB
C++
// Copyright (C) 2004, 2005 Laboratoire d'Informatique de Paris 6 (LIP6),
|
|
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
|
|
// et Marie Curie.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Spot; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
// 02111-1307, USA.
|
|
|
|
//#define TRACE
|
|
|
|
#include <iostream>
|
|
#ifdef TRACE
|
|
#define trace std::cerr
|
|
#else
|
|
#define trace while (0) std::cerr
|
|
#endif
|
|
|
|
#include <cassert>
|
|
#include <list>
|
|
#include "misc/hash.hh"
|
|
#include "tgba/tgba.hh"
|
|
#include "emptiness.hh"
|
|
#include "emptiness_stats.hh"
|
|
#include "magic.hh"
|
|
#include "ndfs_result.hxx"
|
|
|
|
namespace spot
|
|
{
|
|
namespace
|
|
{
|
|
enum color {WHITE, BLUE, RED};
|
|
|
|
/// \brief Emptiness checker on spot::tgba automata having at most one
|
|
/// accepting condition (i.e. a TBA).
|
|
template <typename heap>
|
|
class magic_search : public emptiness_check, public ec_statistics
|
|
{
|
|
public:
|
|
/// \brief Initialize the Magic Search algorithm on the automaton \a a
|
|
///
|
|
/// \pre The automaton \a a must have at most one accepting
|
|
/// condition (i.e. it is a TBA).
|
|
magic_search(const tgba *a, size_t size)
|
|
: emptiness_check(a),
|
|
h(size),
|
|
all_cond(a->all_acceptance_conditions())
|
|
{
|
|
assert(a->number_of_acceptance_conditions() <= 1);
|
|
}
|
|
|
|
virtual ~magic_search()
|
|
{
|
|
// Release all iterators on the stacks.
|
|
while (!st_blue.empty())
|
|
{
|
|
h.pop_notify(st_blue.front().s);
|
|
delete st_blue.front().it;
|
|
st_blue.pop_front();
|
|
}
|
|
while (!st_red.empty())
|
|
{
|
|
h.pop_notify(st_red.front().s);
|
|
delete st_red.front().it;
|
|
st_red.pop_front();
|
|
}
|
|
}
|
|
|
|
/// \brief Perform a Magic Search.
|
|
///
|
|
/// \return non null pointer iff the algorithm has found a
|
|
/// new accepting path.
|
|
///
|
|
/// check() can be called several times (until it returns a null
|
|
/// pointer) to enumerate all the visited accepting paths. The method
|
|
/// visits only a finite set of accepting paths.
|
|
virtual emptiness_check_result* check()
|
|
{
|
|
if (st_red.empty())
|
|
{
|
|
assert(st_blue.empty());
|
|
const state* s0 = a_->get_init_state();
|
|
inc_states();
|
|
h.add_new_state(s0, BLUE);
|
|
push(st_blue, s0, bddfalse, bddfalse);
|
|
if (dfs_blue())
|
|
return new ndfs_result<magic_search<heap>, heap>(*this);
|
|
}
|
|
else
|
|
{
|
|
h.pop_notify(st_red.front().s);
|
|
pop(st_red);
|
|
if (!st_red.empty() && dfs_red())
|
|
return new ndfs_result<magic_search<heap>, heap>(*this);
|
|
else
|
|
if (dfs_blue())
|
|
return new ndfs_result<magic_search<heap>, heap>(*this);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
virtual std::ostream& print_stats(std::ostream &os) const
|
|
{
|
|
os << states() << " distinct nodes visited" << std::endl;
|
|
os << transitions() << " transitions explored" << std::endl;
|
|
os << max_depth() << " nodes for the maximal stack depth" << std::endl;
|
|
if (!st_red.empty())
|
|
{
|
|
assert(!st_blue.empty());
|
|
os << st_blue.size() + st_red.size() - 1
|
|
<< " nodes for the counter example" << std::endl;
|
|
}
|
|
return os;
|
|
}
|
|
|
|
const heap& get_heap() const
|
|
{
|
|
return h;
|
|
}
|
|
|
|
const stack_type& get_st_blue() const
|
|
{
|
|
return st_blue;
|
|
}
|
|
|
|
const stack_type& get_st_red() const
|
|
{
|
|
return st_red;
|
|
}
|
|
private:
|
|
|
|
void push(stack_type& st, const state* s,
|
|
const bdd& label, const bdd& acc)
|
|
{
|
|
inc_depth();
|
|
tgba_succ_iterator* i = a_->succ_iter(s);
|
|
i->first();
|
|
st.push_front(stack_item(s, i, label, acc));
|
|
}
|
|
|
|
void pop(stack_type& st)
|
|
{
|
|
dec_depth();
|
|
delete st.front().it;
|
|
st.pop_front();
|
|
}
|
|
|
|
/// \brief Stack of the blue dfs.
|
|
stack_type st_blue;
|
|
|
|
/// \brief Stack of the red dfs.
|
|
stack_type st_red;
|
|
|
|
/// \brief Map where each visited state is colored
|
|
/// by the last dfs visiting it.
|
|
heap h;
|
|
|
|
/// State targeted by the red dfs.
|
|
const state* target;
|
|
|
|
/// The unique accepting condition of the automaton \a a.
|
|
bdd all_cond;
|
|
|
|
bool dfs_blue()
|
|
{
|
|
while (!st_blue.empty())
|
|
{
|
|
stack_item& f = st_blue.front();
|
|
trace << "DFS_BLUE treats: " << a_->format_state(f.s) << std::endl;
|
|
if (!f.it->done())
|
|
{
|
|
const state *s_prime = f.it->current_state();
|
|
trace << " Visit the successor: "
|
|
<< a_->format_state(s_prime) << std::endl;
|
|
bdd label = f.it->current_condition();
|
|
bdd acc = f.it->current_acceptance_conditions();
|
|
// Go down the edge (f.s, <label, acc>, s_prime)
|
|
f.it->next();
|
|
inc_transitions();
|
|
typename heap::color_ref c = h.get_color_ref(s_prime);
|
|
if (c.is_white())
|
|
{
|
|
trace << " It is white, go down" << std::endl;
|
|
inc_states();
|
|
h.add_new_state(s_prime, BLUE);
|
|
push(st_blue, s_prime, label, acc);
|
|
}
|
|
else
|
|
{
|
|
if (acc == all_cond && c.get_color() != RED)
|
|
{
|
|
// the test 'c.get_color() != RED' is added to limit
|
|
// the number of runs reported by successive
|
|
// calls to the check method. Without this
|
|
// functionnality, the test can be ommited.
|
|
trace << " It is blue and the arc is "
|
|
<< "accepting, start a red dfs" << std::endl;
|
|
target = f.s;
|
|
c.set_color(RED);
|
|
push(st_red, s_prime, label, acc);
|
|
if (dfs_red())
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
trace << " It is blue or red, pop it" << std::endl;
|
|
h.pop_notify(s_prime);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
// Backtrack the edge
|
|
// (predecessor of f.s in st_blue, <f.label, f.acc>, f.s)
|
|
{
|
|
trace << " All the successors have been visited" << std::endl;
|
|
stack_item f_dest(f);
|
|
pop(st_blue);
|
|
typename heap::color_ref c = h.get_color_ref(f_dest.s);
|
|
assert(!c.is_white());
|
|
if (!st_blue.empty() &&
|
|
f_dest.acc == all_cond && c.get_color() != RED)
|
|
{
|
|
// the test 'c.get_color() != RED' is added to limit
|
|
// the number of runs reported by successive
|
|
// calls to the check method. Without this
|
|
// functionnality, the test can be ommited.
|
|
trace << " It is blue and the arc from "
|
|
<< a_->format_state(st_blue.front().s)
|
|
<< " to it is accepting, start a red dfs"
|
|
<< std::endl;
|
|
target = st_blue.front().s;
|
|
c.set_color(RED);
|
|
push(st_red, f_dest.s, f_dest.label, f_dest.acc);
|
|
if (dfs_red())
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
trace << " Pop it" << std::endl;
|
|
h.pop_notify(f_dest.s);
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool dfs_red()
|
|
{
|
|
assert(!st_red.empty());
|
|
if (target->compare(st_red.front().s) == 0)
|
|
return true;
|
|
|
|
while (!st_red.empty())
|
|
{
|
|
stack_item& f = st_red.front();
|
|
trace << "DFS_RED treats: " << a_->format_state(f.s) << std::endl;
|
|
if (!f.it->done())
|
|
{
|
|
const state *s_prime = f.it->current_state();
|
|
trace << " Visit the successor: "
|
|
<< a_->format_state(s_prime) << std::endl;
|
|
bdd label = f.it->current_condition();
|
|
bdd acc = f.it->current_acceptance_conditions();
|
|
// Go down the edge (f.s, <label, acc>, s_prime)
|
|
f.it->next();
|
|
inc_transitions();
|
|
typename heap::color_ref c = h.get_color_ref(s_prime);
|
|
if (c.is_white())
|
|
{
|
|
// If the red dfs find a white here, it must have crossed
|
|
// the blue stack and the target must be reached soon.
|
|
// Notice that this property holds only for explicit search.
|
|
// Collisions in bit-state hashing search can also lead
|
|
// to the visit of white state. Anyway, it is not necessary
|
|
// to visit white states either if a cycle can be missed
|
|
// with bit-state hashing search.
|
|
trace << " It is white, pop it" << std::endl;
|
|
delete s_prime;
|
|
}
|
|
else if (c.get_color() == BLUE)
|
|
{
|
|
trace << " It is blue, go down" << std::endl;
|
|
c.set_color(RED);
|
|
push(st_red, s_prime, label, acc);
|
|
if (target->compare(s_prime) == 0)
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
trace << " It is red, pop it" << std::endl;
|
|
h.pop_notify(s_prime);
|
|
}
|
|
}
|
|
else // Backtrack
|
|
{
|
|
trace << " All the successors have been visited, pop it"
|
|
<< std::endl;
|
|
h.pop_notify(f.s);
|
|
pop(st_red);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
};
|
|
|
|
class explicit_magic_search_heap
|
|
{
|
|
public:
|
|
class color_ref
|
|
{
|
|
public:
|
|
color_ref(color* c) :p(c)
|
|
{
|
|
}
|
|
color get_color() const
|
|
{
|
|
return *p;
|
|
}
|
|
void set_color(color c)
|
|
{
|
|
assert(!is_white());
|
|
*p=c;
|
|
}
|
|
bool is_white() const
|
|
{
|
|
return p==0;
|
|
}
|
|
private:
|
|
color *p;
|
|
};
|
|
|
|
explicit_magic_search_heap(size_t)
|
|
{
|
|
}
|
|
|
|
~explicit_magic_search_heap()
|
|
{
|
|
hash_type::const_iterator s = h.begin();
|
|
while (s != h.end())
|
|
{
|
|
// Advance the iterator before deleting the "key" pointer.
|
|
const state* ptr = s->first;
|
|
++s;
|
|
delete ptr;
|
|
}
|
|
}
|
|
|
|
color_ref get_color_ref(const state*& s)
|
|
{
|
|
hash_type::iterator it = h.find(s);
|
|
if (it==h.end())
|
|
return color_ref(0);
|
|
if (s!=it->first)
|
|
{
|
|
delete s;
|
|
s = it->first;
|
|
}
|
|
return color_ref(&(it->second));
|
|
}
|
|
|
|
void add_new_state(const state* s, color c)
|
|
{
|
|
assert(h.find(s)==h.end());
|
|
h.insert(std::make_pair(s, c));
|
|
}
|
|
|
|
void pop_notify(const state*) const
|
|
{
|
|
}
|
|
|
|
bool has_been_visited(const state* s) const
|
|
{
|
|
hash_type::const_iterator it = h.find(s);
|
|
return (it != h.end());
|
|
}
|
|
|
|
enum { Has_Size = 1 };
|
|
int size() const
|
|
{
|
|
return h.size();
|
|
}
|
|
|
|
private:
|
|
|
|
typedef Sgi::hash_map<const state*, color,
|
|
state_ptr_hash, state_ptr_equal> hash_type;
|
|
hash_type h;
|
|
};
|
|
|
|
class bsh_magic_search_heap
|
|
{
|
|
public:
|
|
class color_ref
|
|
{
|
|
public:
|
|
color_ref(unsigned char *b, unsigned char o): base(b), offset(o*2)
|
|
{
|
|
}
|
|
color get_color() const
|
|
{
|
|
return color(((*base) >> offset) & 3U);
|
|
}
|
|
void set_color(color c)
|
|
{
|
|
*base = (*base & ~(3U << offset)) | (c << offset);
|
|
}
|
|
bool is_white() const
|
|
{
|
|
return get_color()==WHITE;
|
|
}
|
|
private:
|
|
unsigned char *base;
|
|
unsigned char offset;
|
|
};
|
|
|
|
bsh_magic_search_heap(size_t s)
|
|
{
|
|
size_ = s;
|
|
h = new unsigned char[size_];
|
|
memset(h, WHITE, size_);
|
|
}
|
|
|
|
~bsh_magic_search_heap()
|
|
{
|
|
delete[] h;
|
|
}
|
|
|
|
color_ref get_color_ref(const state*& s)
|
|
{
|
|
size_t ha = s->hash();
|
|
return color_ref(&(h[ha%size_]), ha%4);
|
|
}
|
|
|
|
void add_new_state(const state* s, color c)
|
|
{
|
|
color_ref cr(get_color_ref(s));
|
|
assert(cr.is_white());
|
|
cr.set_color(c);
|
|
}
|
|
|
|
void pop_notify(const state* s) const
|
|
{
|
|
delete s;
|
|
}
|
|
|
|
bool has_been_visited(const state* s) const
|
|
{
|
|
size_t ha = s->hash();
|
|
return color((h[ha%size_] >> ((ha%4)*2)) & 3U) != WHITE;
|
|
}
|
|
|
|
enum { Has_Size = 0 };
|
|
|
|
private:
|
|
size_t size_;
|
|
unsigned char* h;
|
|
};
|
|
|
|
} // anonymous
|
|
|
|
emptiness_check* explicit_magic_search(const tgba *a)
|
|
{
|
|
return new magic_search<explicit_magic_search_heap>(a, 0);
|
|
}
|
|
|
|
emptiness_check* bit_state_hashing_magic_search(
|
|
const tgba *a, size_t size)
|
|
{
|
|
return new magic_search<bsh_magic_search_heap>(a, size);
|
|
}
|
|
|
|
}
|