* elisp/hoa-mode.el, elisp/Makefile.am, elisp/README: New files. * debian/copyright, configure.ac, README, Makefile.am: Adjust. * doc/org/init.el.in: Adjust to load hoa-mode.el. * doc/org/spot.css: Add entries for HOA mode. * doc/org/hoa.org, doc/org/ltldo.org, doc/org/oaut.org, doc/org/tut20.org, doc/org/tut21.org, doc/org/tut22.org, doc/org/tut30.org: Make the HOA outputs as HOA.
1.8 KiB
1.8 KiB
Creating an automaton in C++
This example demonstrates how to create an automaton in C++, and then print it.
#include <iostream>
#include "twaalgos/hoa.hh"
#include "twa/twagraph.hh"
int main(void)
{
// The dict is used to maintain the correspondence between the
// atomic propositions and the BDD variables to label the edges of
// the automaton.
spot::bdd_dict_ptr dict = spot::make_bdd_dict();
// This creates an empty automaton that we have yet to fill.
spot::twa_graph_ptr aut = make_twa_graph(dict);
// Since a BDD is associated to every atomic proposition, the
// register_ap() function returns a BDD variable number
// that can be converted into a BDD using bdd_ithvar().
bdd p1 = bdd_ithvar(aut->register_ap("p1"));
bdd p2 = bdd_ithvar(aut->register_ap("p2"));
// Set the acceptance condition of the automaton to Inf(0)&Inf(1)
aut->set_generalized_buchi(2);
// States are numbered from 0.
aut->new_states(3);
// new_edge() takes 3 mandatory parameters:
// source state, destination state, label
// and a last optional parameter can be used
// to specify membership to acceptance sets.
aut->new_edge(0, 1, p1);
aut->new_edge(1, 1, p1 & p2, {0});
aut->new_edge(1, 2, p2, {1});
aut->new_edge(2, 1, p1 | p2, {0, 1});
// Print the resulting automaton.
print_hoa(std::cout, aut);
return 0;
}
HOA: v1
States: 3
Start: 0
AP: 2 "p1" "p2"
acc-name: generalized-Buchi 2
Acceptance: 2 Inf(0)&Inf(1)
properties: trans-labels explicit-labels trans-acc
--BODY--
State: 0
[0] 1
State: 1
[0&1] 1 {0}
[1] 2 {1}
State: 2
[0 | 1] 1 {0 1}
--END--