* src/bin/dstar2tgba.cc, src/bin/ltlcross.cc, src/bin/randltl.cc, src/ltltest/reduccmp.test, src/neverparse/neverclaimparse.yy, src/tgbatest/ltl2ta.test, src/tgbatest/ltl2tgba.cc, src/tgbatest/ltlcross.test, src/tgbatest/neverclaimread.test, wrap/python/ajax/ltl2tgba.html: Fix conflicts.
2401 lines
63 KiB
C++
2401 lines
63 KiB
C++
// -*- coding: utf-8 -*-
|
||
// Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014 Laboratoire
|
||
// de Recherche et Développement de l'Epita (LRDE).
|
||
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire
|
||
// d'Informatique de Paris 6 (LIP6), département Systèmes Répartis
|
||
// Coopératifs (SRC), Université Pierre et Marie Curie.
|
||
//
|
||
// This file is part of Spot, a model checking library.
|
||
//
|
||
// Spot is free software; you can redistribute it and/or modify it
|
||
// under the terms of the GNU General Public License as published by
|
||
// the Free Software Foundation; either version 3 of the License, or
|
||
// (at your option) any later version.
|
||
//
|
||
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
// License for more details.
|
||
//
|
||
// You should have received a copy of the GNU General Public License
|
||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
#include "misc/hash.hh"
|
||
#include "misc/bddlt.hh"
|
||
#include "misc/minato.hh"
|
||
#include "ltlast/visitor.hh"
|
||
#include "ltlast/allnodes.hh"
|
||
#include "ltlvisit/nenoform.hh"
|
||
#include "ltlvisit/tostring.hh"
|
||
#include "ltlvisit/postfix.hh"
|
||
#include "ltlvisit/apcollect.hh"
|
||
#include "ltlvisit/mark.hh"
|
||
#include "ltlvisit/tostring.hh"
|
||
#include <cassert>
|
||
#include <memory>
|
||
#include <utility>
|
||
#include "ltl2tgba_fm.hh"
|
||
#include "tgba/bddprint.hh"
|
||
#include "tgbaalgos/sccinfo.hh"
|
||
//#include "tgbaalgos/dotty.hh"
|
||
#include "priv/acccompl.hh"
|
||
|
||
namespace spot
|
||
{
|
||
using namespace ltl;
|
||
|
||
namespace
|
||
{
|
||
|
||
|
||
// This should only be called on And formulae and return
|
||
// the set of subformula that are implied by the formulas
|
||
// already in the And.
|
||
// If f = Ga & (b R c) & G(d & (e R (g R h)) & Xj) & Xk this
|
||
// returns the set {a, # implied by Ga
|
||
// c, # implied by b R c
|
||
// d, e R (g R h), g R h, h, Xj # implied by G(d & ...)
|
||
// }
|
||
// Leave recurring to false on first call.
|
||
typedef std::set<const formula*, formula_ptr_less_than> formula_set;
|
||
void
|
||
implied_subformulae(const formula* in, formula_set& rec,
|
||
bool recurring = false)
|
||
{
|
||
const multop* f = is_And(in);
|
||
if (!f)
|
||
{
|
||
// Only recursive calls should be made with an operator that
|
||
// is not And.
|
||
assert(recurring);
|
||
rec.insert(in);
|
||
return;
|
||
}
|
||
unsigned s = f->size();
|
||
for (unsigned n = 0; n < s; ++n)
|
||
{
|
||
const formula* sub = f->nth(n);
|
||
// Recurring is set if we are under "G(...)" or "0 R (...)"
|
||
// or (...) W 0".
|
||
if (recurring)
|
||
rec.insert(sub);
|
||
if (const unop* g = is_G(sub))
|
||
{
|
||
implied_subformulae(g->child(), rec, true);
|
||
}
|
||
else if (const binop* w = is_W(sub))
|
||
{
|
||
// f W 0 = Gf
|
||
if (w->second() == constant::false_instance())
|
||
implied_subformulae(w->first(), rec, true);
|
||
}
|
||
else
|
||
while (const binop* b = is_binop(sub, binop::R, binop::M))
|
||
{
|
||
// in 'f R g' and 'f M g' always evaluate 'g'.
|
||
sub = b->second();
|
||
if (b->first() == constant::false_instance())
|
||
{
|
||
assert(b->op() == binop::R); // because 0 M g = 0
|
||
// 0 R f = Gf
|
||
implied_subformulae(sub, rec, true);
|
||
break;
|
||
}
|
||
rec.insert(sub);
|
||
}
|
||
}
|
||
}
|
||
|
||
class translate_dict;
|
||
|
||
class ratexp_to_dfa
|
||
{
|
||
typedef typename tgba_digraph::namer<const formula*,
|
||
formula_ptr_hash>::type namer;
|
||
public:
|
||
ratexp_to_dfa(translate_dict& dict);
|
||
std::tuple<const_tgba_digraph_ptr, const namer*, const state*>
|
||
succ(const formula* f);
|
||
~ratexp_to_dfa();
|
||
|
||
protected:
|
||
typedef std::pair<tgba_digraph_ptr, const namer*> labelled_aut;
|
||
labelled_aut translate(const formula* f);
|
||
|
||
private:
|
||
translate_dict& dict_;
|
||
typedef std::unordered_map<const formula*, labelled_aut,
|
||
formula_ptr_hash> f2a_t;
|
||
std::vector<labelled_aut> automata_;
|
||
f2a_t f2a_;
|
||
};
|
||
|
||
// Helper dictionary. We represent formulae using BDDs to
|
||
// simplify them, and then translate BDDs back into formulae.
|
||
//
|
||
// The name of the variables are inspired from Couvreur's FM paper.
|
||
// "a" variables are promises (written "a" in the paper)
|
||
// "next" variables are X's operands (the "r_X" variables from the paper)
|
||
// "var" variables are atomic propositions.
|
||
class translate_dict
|
||
{
|
||
public:
|
||
|
||
translate_dict(const bdd_dict_ptr& dict, ltl_simplifier* ls, bool exprop,
|
||
bool single_acc)
|
||
: dict(dict),
|
||
ls(ls),
|
||
a_set(bddtrue),
|
||
var_set(bddtrue),
|
||
next_set(bddtrue),
|
||
transdfa(*this),
|
||
exprop(exprop),
|
||
single_acc(single_acc)
|
||
{
|
||
}
|
||
|
||
~translate_dict()
|
||
{
|
||
fv_map::iterator i;
|
||
for (auto& i: next_map)
|
||
i.first->destroy();
|
||
dict->unregister_all_my_variables(this);
|
||
|
||
flagged_formula_to_bdd_map::iterator j = ltl_bdd_.begin();
|
||
// Advance the iterator before destroying previous value.
|
||
while (j != ltl_bdd_.end())
|
||
j++->first.f->destroy();
|
||
}
|
||
|
||
bdd_dict_ptr dict;
|
||
ltl_simplifier* ls;
|
||
mark_tools mt;
|
||
|
||
typedef bdd_dict::fv_map fv_map;
|
||
typedef std::vector<const formula*> vf_map;
|
||
|
||
fv_map next_map; ///< Maps "Next" variables to BDD variables
|
||
vf_map next_formula_map; ///< Maps BDD variables to "Next" variables
|
||
|
||
bdd a_set;
|
||
bdd var_set;
|
||
bdd next_set;
|
||
|
||
ratexp_to_dfa transdfa;
|
||
bool exprop;
|
||
bool single_acc;
|
||
|
||
enum translate_flags
|
||
{
|
||
flags_none = 0,
|
||
// Keep these bits slightly apart as we will use them as-is
|
||
// in the hash function for flagged_formula.
|
||
flags_mark_all = (1<<10),
|
||
flags_recurring = (1<<14),
|
||
};
|
||
|
||
struct flagged_formula
|
||
{
|
||
const formula* f;
|
||
unsigned flags; // a combination of translate_flags
|
||
|
||
bool
|
||
operator==(const flagged_formula& other) const
|
||
{
|
||
return this->f == other.f && this->flags == other.flags;
|
||
}
|
||
};
|
||
|
||
struct flagged_formula_hash:
|
||
public std::unary_function<flagged_formula, size_t>
|
||
{
|
||
size_t
|
||
operator()(const flagged_formula& that) const
|
||
{
|
||
return that.f->hash() ^ size_t(that.flags);
|
||
}
|
||
};
|
||
|
||
struct translated
|
||
{
|
||
bdd symbolic;
|
||
bool has_rational:1;
|
||
bool has_marked:1;
|
||
};
|
||
|
||
typedef
|
||
std::unordered_map<flagged_formula, translated,
|
||
flagged_formula_hash> flagged_formula_to_bdd_map;
|
||
private:
|
||
flagged_formula_to_bdd_map ltl_bdd_;
|
||
|
||
public:
|
||
|
||
int
|
||
register_proposition(const formula* f)
|
||
{
|
||
int num = dict->register_proposition(f, this);
|
||
var_set &= bdd_ithvar(num);
|
||
return num;
|
||
}
|
||
|
||
int
|
||
register_a_variable(const formula* f)
|
||
{
|
||
if (single_acc)
|
||
{
|
||
int num = dict->register_acceptance_variable
|
||
(ltl::constant::true_instance(), this);
|
||
a_set &= bdd_ithvar(num);
|
||
return num;
|
||
}
|
||
// A promise of 'x', noted P(x) is pretty much like the F(x)
|
||
// LTL formula, it ensure that 'x' will be fulfilled (= not
|
||
// promised anymore) eventually.
|
||
// So a U b = ((a&Pb) W b)
|
||
// a U (b U c) = (a&P(b U c)) W (b&P(c) W c)
|
||
// the latter encoding may be simplified to
|
||
// a U (b U c) = (a&P(c)) W (b&P(c) W c)
|
||
//
|
||
// Similarly
|
||
// a M b = (a R (b&P(a)))
|
||
// (a M b) M c = (a R (b & Pa)) R (c & P(a M b))
|
||
// = (a R (b & Pa)) R (c & P(a & b))
|
||
//
|
||
// The code below therefore implement the following
|
||
// rules:
|
||
// P(a U b) = P(b)
|
||
// P(F(a)) = P(a)
|
||
// P(a M b) = P(a & b)
|
||
//
|
||
// The latter rule INCORRECTLY appears as P(a M b)=P(a)
|
||
// in section 3.5 of
|
||
// "LTL translation improvements in Spot 1.0",
|
||
// A. Duret-Lutz. IJCCBS 5(1/2):31-54, March 2014.
|
||
// and was unfortunately implemented this way until Spot
|
||
// 1.2.4. A counterexample is given by the formula
|
||
// G(Fa & ((a M b) U ((c U !d) M d)))
|
||
// that was found by Joachim Klein. Here P((c U !d) M d)
|
||
// and P(c U !d) should not both be simplified to P(!d).
|
||
for (;;)
|
||
{
|
||
if (const binop* b = is_binop(f))
|
||
{
|
||
binop::type op = b->op();
|
||
if (op == binop::U)
|
||
{
|
||
// P(a U b) = P(b)
|
||
f = b->second();
|
||
}
|
||
else if (op == binop::M)
|
||
{
|
||
// P(a M b) = P(a & b)
|
||
const formula* g =
|
||
multop::instance(multop::And,
|
||
b->first()->clone(),
|
||
b->second()->clone());
|
||
int num = dict->register_acceptance_variable(g, this);
|
||
a_set &= bdd_ithvar(num);
|
||
g->destroy();
|
||
return num;
|
||
}
|
||
else
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
else if (const unop* u = is_unop(f, unop::F))
|
||
{
|
||
// P(F(a)) = P(a)
|
||
f = u->child();
|
||
}
|
||
else
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
int num = dict->register_acceptance_variable(f, this);
|
||
a_set &= bdd_ithvar(num);
|
||
return num;
|
||
}
|
||
|
||
int
|
||
register_next_variable(const formula* f)
|
||
{
|
||
int num;
|
||
// Do not build a Next variable that already exists.
|
||
fv_map::iterator sii = next_map.find(f);
|
||
if (sii != next_map.end())
|
||
{
|
||
num = sii->second;
|
||
}
|
||
else
|
||
{
|
||
f = f->clone();
|
||
num = dict->register_anonymous_variables(1, this);
|
||
next_map[f] = num;
|
||
next_formula_map.resize(bdd_varnum());
|
||
next_formula_map[num] = f;
|
||
}
|
||
next_set &= bdd_ithvar(num);
|
||
return num;
|
||
}
|
||
|
||
std::ostream&
|
||
dump(std::ostream& os) const
|
||
{
|
||
fv_map::const_iterator fi;
|
||
os << "Next Variables:" << std::endl;
|
||
for (auto& fi: next_map)
|
||
{
|
||
os << " " << fi.second << ": Next[";
|
||
to_string(fi.first, os) << ']' << std::endl;
|
||
}
|
||
os << "Shared Dict:" << std::endl;
|
||
dict->dump(os);
|
||
return os;
|
||
}
|
||
|
||
const formula*
|
||
var_to_formula(int var) const
|
||
{
|
||
const bdd_dict::bdd_info& i = dict->bdd_map[var];
|
||
if (i.type != bdd_dict::anon)
|
||
{
|
||
assert(i.type == bdd_dict::acc || i.type == bdd_dict::var);
|
||
return i.f->clone();
|
||
}
|
||
const formula* f = next_formula_map[var];
|
||
assert(f);
|
||
return f->clone();
|
||
}
|
||
|
||
bdd
|
||
boolean_to_bdd(const formula* f)
|
||
{
|
||
bdd res = ls->as_bdd(f);
|
||
var_set &= bdd_support(res);
|
||
return res;
|
||
}
|
||
|
||
const formula*
|
||
conj_bdd_to_formula(bdd b, multop::type op = multop::And) const
|
||
{
|
||
if (b == bddfalse)
|
||
return constant::false_instance();
|
||
multop::vec* v = new multop::vec;
|
||
while (b != bddtrue)
|
||
{
|
||
int var = bdd_var(b);
|
||
const formula* res = var_to_formula(var);
|
||
bdd high = bdd_high(b);
|
||
if (high == bddfalse)
|
||
{
|
||
res = unop::instance(unop::Not, res);
|
||
b = bdd_low(b);
|
||
}
|
||
else
|
||
{
|
||
assert(bdd_low(b) == bddfalse);
|
||
b = high;
|
||
}
|
||
assert(b != bddfalse);
|
||
v->push_back(res);
|
||
}
|
||
return multop::instance(op, v);
|
||
}
|
||
|
||
const formula*
|
||
conj_bdd_to_sere(bdd b) const
|
||
{
|
||
return conj_bdd_to_formula(b, multop::AndRat);
|
||
}
|
||
|
||
const formula*
|
||
bdd_to_formula(bdd f)
|
||
{
|
||
if (f == bddfalse)
|
||
return constant::false_instance();
|
||
|
||
multop::vec* v = new multop::vec;
|
||
|
||
minato_isop isop(f);
|
||
bdd cube;
|
||
while ((cube = isop.next()) != bddfalse)
|
||
v->push_back(conj_bdd_to_formula(cube));
|
||
|
||
return multop::instance(multop::Or, v);
|
||
}
|
||
|
||
const formula*
|
||
bdd_to_sere(bdd f)
|
||
{
|
||
if (f == bddfalse)
|
||
return constant::false_instance();
|
||
|
||
multop::vec* v = new multop::vec;
|
||
|
||
minato_isop isop(f);
|
||
bdd cube;
|
||
while ((cube = isop.next()) != bddfalse)
|
||
v->push_back(conj_bdd_to_sere(cube));
|
||
|
||
return multop::instance(multop::OrRat, v);
|
||
}
|
||
|
||
const translated&
|
||
ltl_to_bdd(const formula* f, bool mark_all, bool recurring = false);
|
||
|
||
};
|
||
|
||
#ifdef __GNUC__
|
||
# define unused __attribute__((unused))
|
||
#else
|
||
# define unused
|
||
#endif
|
||
|
||
// Debugging function.
|
||
static unused
|
||
std::ostream&
|
||
trace_ltl_bdd(const translate_dict& d, bdd f)
|
||
{
|
||
std::cerr << "Displaying BDD ";
|
||
bdd_print_set(std::cerr, d.dict, f) << ":\n";
|
||
|
||
minato_isop isop(f);
|
||
bdd cube;
|
||
while ((cube = isop.next()) != bddfalse)
|
||
{
|
||
bdd label = bdd_exist(cube, d.next_set);
|
||
bdd dest_bdd = bdd_existcomp(cube, d.next_set);
|
||
const formula* dest = d.conj_bdd_to_formula(dest_bdd);
|
||
bdd_print_set(std::cerr, d.dict, label) << " => ";
|
||
bdd_print_set(std::cerr, d.dict, dest_bdd) << " = "
|
||
<< to_string(dest)
|
||
<< '\n';
|
||
dest->destroy();
|
||
}
|
||
return std::cerr;
|
||
}
|
||
|
||
|
||
|
||
// Gather all promises of a formula. These are the
|
||
// right-hand sides of U or F operators.
|
||
class ltl_promise_visitor: public postfix_visitor
|
||
{
|
||
public:
|
||
ltl_promise_visitor(translate_dict& dict)
|
||
: dict_(dict), res_(bddtrue)
|
||
{
|
||
}
|
||
|
||
virtual
|
||
~ltl_promise_visitor()
|
||
{
|
||
}
|
||
|
||
bdd
|
||
result() const
|
||
{
|
||
return res_;
|
||
}
|
||
|
||
using postfix_visitor::doit;
|
||
|
||
virtual void
|
||
doit(const unop* node)
|
||
{
|
||
if (node->op() == unop::F)
|
||
res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
|
||
}
|
||
|
||
virtual void
|
||
doit(const binop* node)
|
||
{
|
||
if (node->op() == binop::U)
|
||
res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
|
||
}
|
||
|
||
private:
|
||
translate_dict& dict_;
|
||
bdd res_;
|
||
};
|
||
|
||
bdd translate_ratexp(const formula* f, translate_dict& dict,
|
||
const formula* to_concat = 0);
|
||
|
||
// Rewrite rule for rational operators.
|
||
class ratexp_trad_visitor: public visitor
|
||
{
|
||
public:
|
||
// negated should only be set for constants or atomic properties
|
||
ratexp_trad_visitor(translate_dict& dict,
|
||
const formula* to_concat = 0)
|
||
: dict_(dict), to_concat_(to_concat)
|
||
{
|
||
}
|
||
|
||
virtual
|
||
~ratexp_trad_visitor()
|
||
{
|
||
if (to_concat_)
|
||
to_concat_->destroy();
|
||
}
|
||
|
||
bdd
|
||
result() const
|
||
{
|
||
return res_;
|
||
}
|
||
|
||
bdd next_to_concat()
|
||
{
|
||
// Encoding X[*0] when there is nothing to concatenate is a
|
||
// way to ensure that we distinguish the rational formula "a"
|
||
// (encoded as "a&X[*0]") from the rational formula "a;[*]"
|
||
// (encoded as "a&X[*]").
|
||
//
|
||
// It's important that when we do "a && (a;[*])" we do not get
|
||
// "a;[*]" as it would occur if we had simply encoded "a" as
|
||
// "a".
|
||
if (!to_concat_)
|
||
to_concat_ = constant::empty_word_instance();
|
||
int x = dict_.register_next_variable(to_concat_);
|
||
return bdd_ithvar(x);
|
||
}
|
||
|
||
bdd now_to_concat()
|
||
{
|
||
if (to_concat_ && to_concat_ != constant::empty_word_instance())
|
||
return recurse(to_concat_);
|
||
|
||
return bddfalse;
|
||
}
|
||
|
||
// Append to_concat_ to all Next variables in IN.
|
||
bdd
|
||
concat_dests(bdd in)
|
||
{
|
||
if (!to_concat_)
|
||
return in;
|
||
minato_isop isop(in);
|
||
bdd cube;
|
||
bdd out = bddfalse;
|
||
while ((cube = isop.next()) != bddfalse)
|
||
{
|
||
bdd label = bdd_exist(cube, dict_.next_set);
|
||
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
|
||
const formula* dest = dict_.conj_bdd_to_sere(dest_bdd);
|
||
if (dest == constant::empty_word_instance())
|
||
{
|
||
out |= label & next_to_concat();
|
||
}
|
||
else
|
||
{
|
||
const formula* dest2 = multop::instance(multop::Concat, dest,
|
||
to_concat_->clone());
|
||
if (dest2 != constant::false_instance())
|
||
{
|
||
int x = dict_.register_next_variable(dest2);
|
||
dest2->destroy();
|
||
out |= label & bdd_ithvar(x);
|
||
}
|
||
}
|
||
}
|
||
return out;
|
||
}
|
||
|
||
void
|
||
visit(const atomic_prop* node)
|
||
{
|
||
res_ = bdd_ithvar(dict_.register_proposition(node));
|
||
res_ &= next_to_concat();
|
||
}
|
||
|
||
void
|
||
visit(const constant* node)
|
||
{
|
||
switch (node->val())
|
||
{
|
||
case constant::True:
|
||
res_ = next_to_concat();
|
||
return;
|
||
case constant::False:
|
||
res_ = bddfalse;
|
||
return;
|
||
case constant::EmptyWord:
|
||
res_ = now_to_concat();
|
||
return;
|
||
}
|
||
SPOT_UNREACHABLE();
|
||
}
|
||
|
||
void
|
||
visit(const unop* node)
|
||
{
|
||
switch (node->op())
|
||
{
|
||
case unop::F:
|
||
case unop::G:
|
||
case unop::X:
|
||
case unop::Finish:
|
||
case unop::Closure:
|
||
case unop::NegClosure:
|
||
case unop::NegClosureMarked:
|
||
SPOT_UNREACHABLE(); // Because not rational operator
|
||
case unop::Not:
|
||
{
|
||
// Not can only appear in front of Boolean
|
||
// expressions.
|
||
const formula* f = node->child();
|
||
assert(f->is_boolean());
|
||
res_ = !recurse(f);
|
||
res_ &= next_to_concat();
|
||
return;
|
||
}
|
||
}
|
||
SPOT_UNREACHABLE();
|
||
}
|
||
|
||
void
|
||
visit(const bunop* bo)
|
||
{
|
||
const formula* f;
|
||
unsigned min = bo->min();
|
||
unsigned max = bo->max();
|
||
|
||
assert(max > 0);
|
||
|
||
unsigned min2 = (min == 0) ? 0 : (min - 1);
|
||
unsigned max2 =
|
||
(max == bunop::unbounded) ? bunop::unbounded : (max - 1);
|
||
|
||
bunop::type op = bo->op();
|
||
switch (op)
|
||
{
|
||
case bunop::Star:
|
||
f = bunop::instance(op, bo->child()->clone(), min2, max2);
|
||
|
||
if (to_concat_)
|
||
f = multop::instance(multop::Concat, f, to_concat_->clone());
|
||
|
||
if (!bo->child()->accepts_eword())
|
||
{
|
||
// f*;g -> f;f*;g | g
|
||
//
|
||
// If f does not accept the empty word, we can easily
|
||
// add "f*;g" as to_concat_ when translating f.
|
||
res_ = recurse(bo->child(), f);
|
||
if (min == 0)
|
||
res_ |= now_to_concat();
|
||
}
|
||
else
|
||
{
|
||
// if "f" accepts the empty word, doing the above would
|
||
// lead to an infinite loop:
|
||
// f*;g -> f;f*;g | g
|
||
// f;f*;g -> f*;g | ...
|
||
//
|
||
// So we do it in three steps:
|
||
// 1. translate f,
|
||
// 2. append f*;g to all destinations
|
||
// 3. add |g
|
||
res_ = recurse(bo->child());
|
||
|
||
// f*;g -> f;f*;g
|
||
minato_isop isop(res_);
|
||
bdd cube;
|
||
res_ = bddfalse;
|
||
while ((cube = isop.next()) != bddfalse)
|
||
{
|
||
bdd label = bdd_exist(cube, dict_.next_set);
|
||
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
|
||
const formula* dest = dict_.conj_bdd_to_sere(dest_bdd);
|
||
int x;
|
||
if (dest == constant::empty_word_instance())
|
||
{
|
||
x = dict_.register_next_variable(f);
|
||
res_ |= label & bdd_ithvar(x);
|
||
}
|
||
else
|
||
{
|
||
const formula*
|
||
dest2 = multop::instance(multop::Concat, dest,
|
||
f->clone());
|
||
if (dest2 != constant::false_instance())
|
||
{
|
||
x = dict_.register_next_variable(dest2);
|
||
dest2->destroy();
|
||
res_ |= label & bdd_ithvar(x);
|
||
}
|
||
}
|
||
}
|
||
f->destroy();
|
||
res_ |= now_to_concat();
|
||
}
|
||
return;
|
||
}
|
||
SPOT_UNREACHABLE();
|
||
}
|
||
|
||
void
|
||
visit(const binop*)
|
||
{
|
||
SPOT_UNREACHABLE(); // Not a rational operator
|
||
}
|
||
|
||
void
|
||
visit(const multop* node)
|
||
{
|
||
multop::type op = node->op();
|
||
switch (op)
|
||
{
|
||
case multop::AndNLM:
|
||
{
|
||
unsigned s = node->size();
|
||
multop::vec* final = new multop::vec;
|
||
multop::vec* non_final = new multop::vec;
|
||
|
||
for (unsigned n = 0; n < s; ++n)
|
||
{
|
||
const formula* f = node->nth(n);
|
||
if (f->accepts_eword())
|
||
final->push_back(f->clone());
|
||
else
|
||
non_final->push_back(f->clone());
|
||
}
|
||
|
||
if (non_final->empty())
|
||
{
|
||
delete non_final;
|
||
// (a* & b*);c = (a*|b*);c
|
||
const formula* f = multop::instance(multop::OrRat, final);
|
||
res_ = recurse_and_concat(f);
|
||
f->destroy();
|
||
break;
|
||
}
|
||
if (!final->empty())
|
||
{
|
||
// let F_i be final formulae
|
||
// N_i be non final formula
|
||
// (F_1 & ... & F_n & N_1 & ... & N_m)
|
||
// = (F_1 | ... | F_n);[*] && (N_1 & ... & N_m)
|
||
// | (F_1 | ... | F_n) && (N_1 & ... & N_m);[*]
|
||
const formula* f =
|
||
multop::instance(multop::OrRat, final);
|
||
const formula* n =
|
||
multop::instance(multop::AndNLM, non_final);
|
||
const formula* t =
|
||
bunop::instance(bunop::Star, constant::true_instance());
|
||
const formula* ft =
|
||
multop::instance(multop::Concat, f->clone(), t->clone());
|
||
const formula* nt =
|
||
multop::instance(multop::Concat, n->clone(), t);
|
||
const formula* ftn =
|
||
multop::instance(multop::AndRat, ft, n);
|
||
const formula* fnt =
|
||
multop::instance(multop::AndRat, f, nt);
|
||
const formula* all =
|
||
multop::instance(multop::OrRat, ftn, fnt);
|
||
res_ = recurse_and_concat(all);
|
||
all->destroy();
|
||
break;
|
||
}
|
||
// No final formula.
|
||
delete final;
|
||
for (unsigned n = 0; n < s; ++n)
|
||
(*non_final)[n]->destroy();
|
||
delete non_final;
|
||
// Translate N_1 & N_2 & ... & N_n into
|
||
// N_1 && (N_2;[*]) && ... && (N_n;[*])
|
||
// | (N_1;[*]) && N_2 && ... && (N_n;[*])
|
||
// | (N_1;[*]) && (N_2;[*]) && ... && N_n
|
||
const formula* star =
|
||
bunop::instance(bunop::Star, constant::true_instance());
|
||
multop::vec* disj = new multop::vec;
|
||
for (unsigned n = 0; n < s; ++n)
|
||
{
|
||
multop::vec* conj = new multop::vec;
|
||
for (unsigned m = 0; m < s; ++m)
|
||
{
|
||
const formula* f = node->nth(m)->clone();
|
||
if (n != m)
|
||
f = multop::instance(multop::Concat,
|
||
f, star->clone());
|
||
conj->push_back(f);
|
||
}
|
||
disj->push_back(multop::instance(multop::AndRat, conj));
|
||
}
|
||
star->destroy();
|
||
const formula* all = multop::instance(multop::OrRat, disj);
|
||
res_ = recurse_and_concat(all);
|
||
all->destroy();
|
||
break;
|
||
}
|
||
case multop::AndRat:
|
||
{
|
||
unsigned s = node->size();
|
||
|
||
res_ = bddtrue;
|
||
for (unsigned n = 0; n < s; ++n)
|
||
{
|
||
bdd res = recurse(node->nth(n));
|
||
// trace_ltl_bdd(dict_, res);
|
||
res_ &= res;
|
||
}
|
||
|
||
//std::cerr << "Pre-Concat:" << std::endl;
|
||
//trace_ltl_bdd(dict_, res_);
|
||
|
||
// If we have translated (a* && b*) in (a* && b*);c, we
|
||
// have to append ";c" to all destinations.
|
||
res_ = concat_dests(res_);
|
||
|
||
if (node->accepts_eword())
|
||
res_ |= now_to_concat();
|
||
|
||
if (op == multop::AndNLM)
|
||
node->destroy();
|
||
break;
|
||
}
|
||
case multop::OrRat:
|
||
{
|
||
res_ = bddfalse;
|
||
unsigned s = node->size();
|
||
for (unsigned n = 0; n < s; ++n)
|
||
res_ |= recurse_and_concat(node->nth(n));
|
||
break;
|
||
}
|
||
case multop::Concat:
|
||
{
|
||
multop::vec* v = new multop::vec;
|
||
unsigned s = node->size();
|
||
v->reserve(s);
|
||
for (unsigned n = 1; n < s; ++n)
|
||
v->push_back(node->nth(n)->clone());
|
||
if (to_concat_)
|
||
v->push_back(to_concat_->clone());
|
||
res_ = recurse(node->nth(0),
|
||
multop::instance(multop::Concat, v));
|
||
break;
|
||
}
|
||
case multop::Fusion:
|
||
{
|
||
assert(node->size() >= 2);
|
||
|
||
// the head
|
||
bdd res = recurse(node->nth(0));
|
||
|
||
// the tail
|
||
const formula* tail = node->all_but(0);
|
||
bdd tail_bdd;
|
||
bool tail_computed = false;
|
||
|
||
//trace_ltl_bdd(dict_, res);
|
||
|
||
minato_isop isop(res);
|
||
bdd cube;
|
||
res_ = bddfalse;
|
||
while ((cube = isop.next()) != bddfalse)
|
||
{
|
||
bdd label = bdd_exist(cube, dict_.next_set);
|
||
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
|
||
const formula* dest = dict_.conj_bdd_to_sere(dest_bdd);
|
||
|
||
if (dest->accepts_eword())
|
||
{
|
||
// The destination is a final state. Make sure we
|
||
// can also exit if tail is satisfied.
|
||
if (!tail_computed)
|
||
{
|
||
tail_bdd = recurse(tail);
|
||
tail_computed = true;
|
||
}
|
||
res_ |= concat_dests(label & tail_bdd);
|
||
|
||
}
|
||
|
||
// If the destination is not 0 or [*0], it means it
|
||
// can have successors. Fusion the tail and append
|
||
// anything to concatenate.
|
||
if (dest->kind() != formula::Constant
|
||
|| dest == ltl::constant::true_instance())
|
||
{
|
||
const formula* dest2 =
|
||
multop::instance(multop::Fusion, dest, tail->clone());
|
||
if (to_concat_)
|
||
dest2 = multop::instance(multop::Concat, dest2,
|
||
to_concat_->clone());
|
||
if (dest2 != constant::false_instance())
|
||
{
|
||
int x = dict_.register_next_variable(dest2);
|
||
dest2->destroy();
|
||
res_ |= label & bdd_ithvar(x);
|
||
}
|
||
}
|
||
}
|
||
|
||
tail->destroy();
|
||
break;
|
||
}
|
||
case multop::And:
|
||
case multop::Or:
|
||
SPOT_UNREACHABLE(); // Not a rational operator
|
||
}
|
||
}
|
||
|
||
bdd
|
||
recurse(const formula* f, const formula* to_concat = 0)
|
||
{
|
||
return translate_ratexp(f, dict_, to_concat);
|
||
}
|
||
|
||
bdd
|
||
recurse_and_concat(const formula* f)
|
||
{
|
||
return translate_ratexp(f, dict_,
|
||
to_concat_ ? to_concat_->clone() : 0);
|
||
}
|
||
|
||
private:
|
||
translate_dict& dict_;
|
||
bdd res_;
|
||
const formula* to_concat_;
|
||
};
|
||
|
||
bdd
|
||
translate_ratexp(const formula* f, translate_dict& dict,
|
||
const formula* to_concat)
|
||
{
|
||
// static unsigned indent = 0;
|
||
// for (unsigned i = indent; i > 0; --i)
|
||
// std::cerr << "| ";
|
||
// std::cerr << "translate_ratexp[" << to_string(f);
|
||
// if (to_concat)
|
||
// std::cerr << ", " << to_string(to_concat);
|
||
// std::cerr << ']' << std::endl;
|
||
// ++indent;
|
||
bdd res;
|
||
if (!f->is_boolean())
|
||
{
|
||
ratexp_trad_visitor v(dict, to_concat);
|
||
f->accept(v);
|
||
res = v.result();
|
||
}
|
||
else
|
||
{
|
||
res = dict.boolean_to_bdd(f);
|
||
// See comment for similar code in next_to_concat.
|
||
if (!to_concat)
|
||
to_concat = constant::empty_word_instance();
|
||
int x = dict.register_next_variable(to_concat);
|
||
res &= bdd_ithvar(x);
|
||
to_concat->destroy();
|
||
}
|
||
// --indent;
|
||
// for (unsigned i = indent; i > 0; --i)
|
||
// std::cerr << "| ";
|
||
// std::cerr << "\\ ";
|
||
// bdd_print_set(std::cerr, dict.dict, res) << std::endl;
|
||
return res;
|
||
}
|
||
|
||
|
||
ratexp_to_dfa::ratexp_to_dfa(translate_dict& dict)
|
||
: dict_(dict)
|
||
{
|
||
}
|
||
|
||
ratexp_to_dfa::~ratexp_to_dfa()
|
||
{
|
||
for (auto i: automata_)
|
||
{
|
||
for (auto n: i.second->names())
|
||
n->destroy();
|
||
delete i.second;
|
||
}
|
||
}
|
||
|
||
ratexp_to_dfa::labelled_aut
|
||
ratexp_to_dfa::translate(const formula* f)
|
||
{
|
||
assert(f->is_in_nenoform());
|
||
|
||
auto a = make_tgba_digraph(dict_.dict);
|
||
auto namer = a->create_namer<const formula*, formula_ptr_hash>();
|
||
|
||
typedef std::set<const formula*, formula_ptr_less_than> set_type;
|
||
set_type formulae_to_translate;
|
||
|
||
f->clone();
|
||
formulae_to_translate.insert(f);
|
||
namer->new_state(f);
|
||
//a->set_init_state(f);
|
||
|
||
while (!formulae_to_translate.empty())
|
||
{
|
||
// Pick one formula.
|
||
const formula* now = *formulae_to_translate.begin();
|
||
formulae_to_translate.erase(formulae_to_translate.begin());
|
||
|
||
// Translate it
|
||
bdd res = translate_ratexp(now, dict_);
|
||
|
||
// Generate (deterministic) successors
|
||
bdd var_set = bdd_existcomp(bdd_support(res), dict_.var_set);
|
||
bdd all_props = bdd_existcomp(res, dict_.var_set);
|
||
while (all_props != bddfalse)
|
||
{
|
||
bdd label = bdd_satoneset(all_props, var_set, bddtrue);
|
||
all_props -= label;
|
||
|
||
const formula* dest =
|
||
dict_.bdd_to_sere(bdd_exist(res & label, dict_.var_set));
|
||
|
||
f2a_t::const_iterator i = f2a_.find(dest);
|
||
if (i != f2a_.end() && i->second.first == nullptr)
|
||
{
|
||
// This state is useless. Ignore it.
|
||
dest->destroy();
|
||
continue;
|
||
}
|
||
|
||
if (!namer->has_state(dest))
|
||
{
|
||
formulae_to_translate.insert(dest);
|
||
namer->new_state(dest);
|
||
}
|
||
else
|
||
{
|
||
dest->destroy();
|
||
}
|
||
|
||
namer->new_transition(now, dest, label);
|
||
}
|
||
}
|
||
|
||
// Register all known propositions for a. This may contain
|
||
// proposition from other parts of the formula being translated,
|
||
// but this is not really important as this automaton will be
|
||
// short-lived. (Maybe it would even work without this line.)
|
||
dict_.dict->register_propositions(dict_.var_set, a);
|
||
|
||
//dotty_reachable(std::cerr, a);
|
||
|
||
// The following code trims the automaton in a crude way by
|
||
// eliminating SCCs that are not coaccessible. It does not
|
||
// actually remove the states, it simply marks the corresponding
|
||
// formulae as associated to the null pointer in the f2a_ map.
|
||
// The method succ() interprets this as False.
|
||
|
||
scc_info* sm = new scc_info(a);
|
||
unsigned scc_count = sm->scc_count();
|
||
// Remember whether each SCC is coaccessible.
|
||
std::vector<bool> coaccessible(scc_count);
|
||
// SCC are numbered in topological order
|
||
for (unsigned n = 0; n < scc_count; ++n)
|
||
{
|
||
// The SCC is coaccessible if any of its states
|
||
// is final (i.e., it accepts [*0])...
|
||
bool coacc = false;
|
||
auto& st = sm->states_of(n);
|
||
for (auto l: st)
|
||
if (namer->get_name(l)->accepts_eword())
|
||
{
|
||
coacc = true;
|
||
break;
|
||
}
|
||
if (!coacc)
|
||
{
|
||
// ... or if any of its successors is coaccessible.
|
||
for (auto& i: sm->succ(n))
|
||
if (coaccessible[i.dst])
|
||
{
|
||
coacc = true;
|
||
break;
|
||
}
|
||
}
|
||
if (!coacc)
|
||
{
|
||
// Mark all formulas of this SCC as useless.
|
||
for (auto f: st)
|
||
f2a_.emplace(std::piecewise_construct,
|
||
std::forward_as_tuple(namer->get_name(f)),
|
||
std::forward_as_tuple(nullptr, nullptr));
|
||
}
|
||
else
|
||
{
|
||
for (auto f: st)
|
||
f2a_.emplace(std::piecewise_construct,
|
||
std::forward_as_tuple(namer->get_name(f)),
|
||
std::forward_as_tuple(a, namer));
|
||
}
|
||
coaccessible[n] = coacc;
|
||
}
|
||
delete sm;
|
||
if (coaccessible[scc_count - 1])
|
||
{
|
||
automata_.emplace_back(a, namer);
|
||
return labelled_aut(a, namer);
|
||
}
|
||
else
|
||
{
|
||
for (auto n: namer->names())
|
||
n->destroy();
|
||
delete namer;
|
||
return labelled_aut(nullptr, nullptr);
|
||
}
|
||
}
|
||
|
||
// FIXME: use the new tgba::succ() interface
|
||
std::tuple<const_tgba_digraph_ptr,
|
||
const ratexp_to_dfa::namer*,
|
||
const state*>
|
||
ratexp_to_dfa::succ(const formula* f)
|
||
{
|
||
f2a_t::const_iterator it = f2a_.find(f);
|
||
labelled_aut a;
|
||
if (it != f2a_.end())
|
||
a = it->second;
|
||
else
|
||
a = translate(f);
|
||
|
||
// If a is null, f has an empty language.
|
||
if (!a.first)
|
||
return std::forward_as_tuple(nullptr, nullptr, nullptr);
|
||
|
||
auto namer = a.second;
|
||
assert(namer->has_state(f));
|
||
auto st = a.first->state_from_number(namer->get_state(f));
|
||
return std::forward_as_tuple(a.first, namer, st);
|
||
}
|
||
|
||
// The rewrite rules used here are adapted from Jean-Michel
|
||
// Couvreur's FM paper, augmented to support rational operators.
|
||
class ltl_trad_visitor: public visitor
|
||
{
|
||
public:
|
||
ltl_trad_visitor(translate_dict& dict, bool mark_all = false,
|
||
bool exprop = false, bool recurring = false)
|
||
: dict_(dict), rat_seen_(false), has_marked_(false),
|
||
mark_all_(mark_all), exprop_(exprop), recurring_(recurring)
|
||
{
|
||
}
|
||
|
||
virtual
|
||
~ltl_trad_visitor()
|
||
{
|
||
}
|
||
|
||
void
|
||
reset(bool mark_all)
|
||
{
|
||
rat_seen_ = false;
|
||
has_marked_ = false;
|
||
mark_all_ = mark_all;
|
||
}
|
||
|
||
bdd
|
||
result() const
|
||
{
|
||
return res_;
|
||
}
|
||
|
||
const translate_dict&
|
||
get_dict() const
|
||
{
|
||
return dict_;
|
||
}
|
||
|
||
bool
|
||
has_rational() const
|
||
{
|
||
return rat_seen_;
|
||
}
|
||
|
||
bool
|
||
has_marked() const
|
||
{
|
||
return has_marked_;
|
||
}
|
||
|
||
void
|
||
visit(const atomic_prop* node)
|
||
{
|
||
res_ = bdd_ithvar(dict_.register_proposition(node));
|
||
}
|
||
|
||
void
|
||
visit(const constant* node)
|
||
{
|
||
switch (node->val())
|
||
{
|
||
case constant::True:
|
||
res_ = bddtrue;
|
||
return;
|
||
case constant::False:
|
||
res_ = bddfalse;
|
||
return;
|
||
case constant::EmptyWord:
|
||
SPOT_UNIMPLEMENTED();
|
||
}
|
||
SPOT_UNREACHABLE();
|
||
}
|
||
|
||
void
|
||
visit(const unop* node)
|
||
{
|
||
unop::type op = node->op();
|
||
|
||
switch (op)
|
||
{
|
||
case unop::F:
|
||
{
|
||
// r(Fy) = r(y) + a(y)X(Fy) if not recurring
|
||
// r(Fy) = r(y) + a(y) if recurring (see comment in G)
|
||
const formula* child = node->child();
|
||
bdd y = recurse(child);
|
||
bdd a = bdd_ithvar(dict_.register_a_variable(child));
|
||
if (!recurring_)
|
||
a &= bdd_ithvar(dict_.register_next_variable(node));
|
||
res_ = y | a;
|
||
break;
|
||
}
|
||
case unop::G:
|
||
{
|
||
// Couvreur's paper suggests that we optimize GFy
|
||
// as
|
||
// r(GFy) = (r(y) + a(y))X(GFy)
|
||
// instead of
|
||
// r(GFy) = (r(y) + a(y)X(Fy)).X(GFy)
|
||
// but this is just a particular case
|
||
// of the "merge all states with the same
|
||
// symbolic rewriting" optimization we do later.
|
||
// (r(Fy).r(GFy) and r(GFy) have the same symbolic
|
||
// rewriting, see Fig.6 in Duret-Lutz's VECOS'11
|
||
// paper for an illustration.)
|
||
//
|
||
// We used to keep things simple and not implement this
|
||
// step, that does not change the result. However it
|
||
// turns out that this extra optimization significantly
|
||
// speeds up (≈×2) the translation of formulas of the
|
||
// form GFa & GFb & ... GFz
|
||
//
|
||
// Unfortunately, our rewrite rules will put such a
|
||
// formula as G(Fa & Fb & ... Fz) which has a different
|
||
// form. We could encode specifically
|
||
// r(G(Fa & Fb & c)) =
|
||
// (r(a)+a(a))(r(b)+a(b))r(c)X(G(Fa & Fb & c))
|
||
// but that would be lots of special cases for G.
|
||
// And if we do it for G, why not for R?
|
||
//
|
||
// Here we generalize this trick by propagating
|
||
// to "recurring" information to subformulas
|
||
// and letting them decide.
|
||
|
||
// r(Gy) = r(y)X(Gy)
|
||
int x = dict_.register_next_variable(node);
|
||
bdd y = recurse(node->child(), /* recurring = */ true);
|
||
res_ = y & bdd_ithvar(x);
|
||
break;
|
||
}
|
||
case unop::Not:
|
||
{
|
||
// r(!y) = !r(y)
|
||
res_ = bdd_not(recurse(node->child()));
|
||
break;
|
||
}
|
||
case unop::X:
|
||
{
|
||
// r(Xy) = Next[y]
|
||
// r(X(a&b&c)) = Next[a]&Next[b]&Next[c]
|
||
// r(X(a|b|c)) = Next[a]|Next[b]|Next[c]
|
||
//
|
||
// The special case for And is to that
|
||
// (p&XF!p)|(!p&XFp)|X(Fp&F!p) (1)
|
||
// get translated as
|
||
// (p&XF!p)|(!p&XFp)|XFp&XF!p (2)
|
||
// and then automatically reduced to
|
||
// (p&XF!p)|(!p&XFp)
|
||
//
|
||
// Formula (2) appears as an example of Boolean
|
||
// simplification in Wring, but our LTL rewriting
|
||
// rules tend to rewrite it as (1).
|
||
//
|
||
// The special case for Or follows naturally, but it's
|
||
// effect is less clear. Benchmarks show that it
|
||
// reduces the number of states and transitions, but it
|
||
// increases the number of non-deterministic states...
|
||
const formula* y = node->child();
|
||
if (const multop* m = is_And(y))
|
||
{
|
||
res_ = bddtrue;
|
||
unsigned s = m->size();
|
||
for (unsigned n = 0; n < s; ++n)
|
||
{
|
||
int x = dict_.register_next_variable(m->nth(n));
|
||
res_ &= bdd_ithvar(x);
|
||
}
|
||
}
|
||
#if 0
|
||
else if (const multop* m = is_Or(y))
|
||
{
|
||
res_ = bddfalse;
|
||
unsigned s = m->size();
|
||
for (unsigned n = 0; n < s; ++n)
|
||
{
|
||
int x = dict_.register_next_variable(m->nth(n));
|
||
res_ |= bdd_ithvar(x);
|
||
}
|
||
}
|
||
#endif
|
||
else
|
||
{
|
||
int x = dict_.register_next_variable(y);
|
||
res_ = bdd_ithvar(x);
|
||
}
|
||
break;
|
||
}
|
||
case unop::Closure:
|
||
{
|
||
// rat_seen_ = true;
|
||
const formula* f = node->child();
|
||
auto p = dict_.transdfa.succ(f);
|
||
res_ = bddfalse;
|
||
auto aut = std::get<0>(p);
|
||
auto namer = std::get<1>(p);
|
||
auto st = std::get<2>(p);
|
||
if (!aut)
|
||
break;
|
||
for (auto i: aut->succ(st))
|
||
{
|
||
bdd label = i->current_condition();
|
||
state* s = i->current_state();
|
||
const formula* dest =
|
||
namer->get_name(aut->state_number(s));
|
||
|
||
if (dest->accepts_eword())
|
||
{
|
||
res_ |= label;
|
||
}
|
||
else
|
||
{
|
||
const formula* dest2 = unop::instance(op, dest->clone());
|
||
if (dest2 == constant::false_instance())
|
||
continue;
|
||
int x = dict_.register_next_variable(dest2);
|
||
dest2->destroy();
|
||
res_ |= label & bdd_ithvar(x);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case unop::NegClosureMarked:
|
||
has_marked_ = true;
|
||
case unop::NegClosure:
|
||
rat_seen_ = true;
|
||
{
|
||
if (mark_all_)
|
||
{
|
||
op = unop::NegClosureMarked;
|
||
has_marked_ = true;
|
||
}
|
||
|
||
const formula* f = node->child();
|
||
auto p = dict_.transdfa.succ(f);
|
||
res_ = bddtrue;
|
||
auto aut = std::get<0>(p);
|
||
auto namer = std::get<1>(p);
|
||
auto st = std::get<2>(p);
|
||
|
||
if (!aut)
|
||
break;
|
||
|
||
res_ = bddfalse;
|
||
bdd missing = bddtrue;
|
||
for (auto i: aut->succ(st))
|
||
{
|
||
bdd label = i->current_condition();
|
||
state* s = i->current_state();
|
||
const formula* dest = namer->get_name(aut->state_number(s));
|
||
|
||
missing -= label;
|
||
|
||
if (!dest->accepts_eword())
|
||
{
|
||
const formula* dest2 = unop::instance(op, dest->clone());
|
||
if (dest2 == constant::false_instance())
|
||
continue;
|
||
int x = dict_.register_next_variable(dest2);
|
||
dest2->destroy();
|
||
res_ |= label & bdd_ithvar(x);
|
||
}
|
||
}
|
||
|
||
res_ |= missing &
|
||
// stick X(1) to preserve determinism.
|
||
bdd_ithvar(dict_.register_next_variable
|
||
(constant::true_instance()));
|
||
//trace_ltl_bdd(dict_, res_);
|
||
}
|
||
break;
|
||
|
||
case unop::Finish:
|
||
SPOT_UNIMPLEMENTED();
|
||
}
|
||
}
|
||
|
||
void
|
||
visit(const bunop*)
|
||
{
|
||
SPOT_UNREACHABLE(); // Not an LTL operator
|
||
}
|
||
|
||
void
|
||
visit(const binop* node)
|
||
{
|
||
binop::type op = node->op();
|
||
|
||
switch (op)
|
||
{
|
||
// r(f1 logical-op f2) = r(f1) logical-op r(f2)
|
||
case binop::Xor:
|
||
case binop::Implies:
|
||
case binop::Equiv:
|
||
// These operators should only appear in Boolean formulas,
|
||
// which must have been dealt with earlier (in
|
||
// translate_dict::ltl_to_bdd()).
|
||
SPOT_UNREACHABLE();
|
||
case binop::U:
|
||
{
|
||
bdd f1 = recurse(node->first());
|
||
bdd f2 = recurse(node->second());
|
||
// r(f1 U f2) = r(f2) + a(f2)r(f1)X(f1 U f2) if not recurring
|
||
// r(f1 U f2) = r(f2) + a(f2)r(f1) if recurring
|
||
f1 &= bdd_ithvar(dict_.register_a_variable(node->second()));
|
||
if (!recurring_)
|
||
f1 &= bdd_ithvar(dict_.register_next_variable(node));
|
||
res_ = f2 | f1;
|
||
break;
|
||
}
|
||
case binop::W:
|
||
{
|
||
// r(f1 W f2) = r(f2) + r(f1)X(f1 W f2) if not recurring
|
||
// r(f1 W f2) = r(f2) + r(f1) if recurring
|
||
//
|
||
// also f1 W 0 = G(f1), so we can enable recurring on f1
|
||
bdd f1 = recurse(node->first(),
|
||
node->second() == constant::false_instance());
|
||
bdd f2 = recurse(node->second());
|
||
if (!recurring_)
|
||
f1 &= bdd_ithvar(dict_.register_next_variable(node));
|
||
res_ = f2 | f1;
|
||
break;
|
||
}
|
||
case binop::R:
|
||
{
|
||
// r(f2) is in factor, so we can propagate the recurring_ flag.
|
||
// if f1=false, we can also turn it on (0 R f = Gf).
|
||
res_ = recurse(node->second(),
|
||
recurring_
|
||
|| node->first() == constant::false_instance());
|
||
// r(f1 R f2) = r(f2)(r(f1) + X(f1 R f2)) if not recurring
|
||
// r(f1 R f2) = r(f2) if recurring
|
||
if (recurring_)
|
||
break;
|
||
bdd f1 = recurse(node->first());
|
||
res_ &= f1 | bdd_ithvar(dict_.register_next_variable(node));
|
||
break;
|
||
}
|
||
case binop::M:
|
||
{
|
||
res_ = recurse(node->second(), recurring_);
|
||
bdd f1 = recurse(node->first());
|
||
// r(f1 M f2) = r(f2)(r(f1) + a(f1&f2)X(f1 M f2)) if not recurring
|
||
// r(f1 M f2) = r(f2)(r(f1) + a(f1&f2)) if recurring
|
||
//
|
||
// Note that the rule above differs from the one given
|
||
// in Figure 2 of
|
||
// "LTL translation improvements in Spot 1.0",
|
||
// A. Duret-Lutz. IJCCBS 5(1/2):31-54, March 2014.
|
||
// Both rules should be OK, but this one is a better fit
|
||
// to the promises simplifications performed in
|
||
// register_a_variable() (see comments in this function).
|
||
// We do not want a U (c M d) to generate two different
|
||
// promises. Generating c&d also makes the output similar
|
||
// to what we would get with the equivalent a U (d U (c & d)).
|
||
//
|
||
// Here we just appear to emit a(f1 M f2) and the conversion
|
||
// to a(f1&f2) is done by register_a_variable().
|
||
bdd a = bdd_ithvar(dict_.register_a_variable(node));
|
||
if (!recurring_)
|
||
a &= bdd_ithvar(dict_.register_next_variable(node));
|
||
res_ &= f1 | a;
|
||
break;
|
||
}
|
||
case binop::EConcatMarked:
|
||
has_marked_ = true;
|
||
/* fall through */
|
||
case binop::EConcat:
|
||
rat_seen_ = true;
|
||
{
|
||
// Recognize f2 on transitions going to destinations
|
||
// that accept the empty word.
|
||
bdd f2 = recurse(node->second());
|
||
bdd f1 = translate_ratexp(node->first(), dict_);
|
||
res_ = bddfalse;
|
||
|
||
if (mark_all_)
|
||
{
|
||
op = binop::EConcatMarked;
|
||
has_marked_ = true;
|
||
}
|
||
|
||
if (exprop_)
|
||
{
|
||
bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
|
||
bdd all_props = bdd_existcomp(f1, dict_.var_set);
|
||
while (all_props != bddfalse)
|
||
{
|
||
bdd label = bdd_satoneset(all_props, var_set, bddtrue);
|
||
all_props -= label;
|
||
|
||
const formula* dest =
|
||
dict_.bdd_to_sere(bdd_exist(f1 & label,
|
||
dict_.var_set));
|
||
|
||
const formula* dest2 =
|
||
binop::instance(op, dest, node->second()->clone());
|
||
|
||
if (dest2 != constant::false_instance())
|
||
{
|
||
int x = dict_.register_next_variable(dest2);
|
||
dest2->destroy();
|
||
res_ |= label & bdd_ithvar(x);
|
||
}
|
||
if (dest->accepts_eword())
|
||
res_ |= label & f2;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
minato_isop isop(f1);
|
||
bdd cube;
|
||
while ((cube = isop.next()) != bddfalse)
|
||
{
|
||
bdd label = bdd_exist(cube, dict_.next_set);
|
||
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
|
||
const formula* dest = dict_.conj_bdd_to_sere(dest_bdd);
|
||
|
||
if (dest == constant::empty_word_instance())
|
||
{
|
||
res_ |= label & f2;
|
||
}
|
||
else
|
||
{
|
||
const formula* dest2 =
|
||
binop::instance(op, dest, node->second()->clone());
|
||
if (dest2 != constant::false_instance())
|
||
{
|
||
int x = dict_.register_next_variable(dest2);
|
||
dest2->destroy();
|
||
res_ |= label & bdd_ithvar(x);
|
||
}
|
||
if (dest->accepts_eword())
|
||
res_ |= label & f2;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case binop::UConcat:
|
||
{
|
||
// Transitions going to destinations accepting the empty
|
||
// word should recognize f2, and the automaton for f1
|
||
// should be understood as universal.
|
||
//
|
||
// The crux of this translation (the use of implication,
|
||
// and the interpretation as a universal automaton) was
|
||
// explained to me (adl) by Felix Klaedtke.
|
||
bdd f2 = recurse(node->second());
|
||
bdd f1 = translate_ratexp(node->first(), dict_);
|
||
res_ = bddtrue;
|
||
|
||
bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
|
||
bdd all_props = bdd_existcomp(f1, dict_.var_set);
|
||
while (all_props != bddfalse)
|
||
{
|
||
|
||
bdd one_prop_set = bddtrue;
|
||
if (exprop_)
|
||
one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
|
||
all_props -= one_prop_set;
|
||
|
||
minato_isop isop(f1 & one_prop_set);
|
||
bdd cube;
|
||
while ((cube = isop.next()) != bddfalse)
|
||
{
|
||
bdd label = bdd_exist(cube, dict_.next_set);
|
||
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
|
||
const formula* dest = dict_.conj_bdd_to_sere(dest_bdd);
|
||
const formula* dest2 =
|
||
binop::instance(op, dest, node->second()->clone());
|
||
|
||
bdd udest =
|
||
bdd_ithvar(dict_.register_next_variable(dest2));
|
||
|
||
if (dest->accepts_eword())
|
||
udest &= f2;
|
||
|
||
dest2->destroy();
|
||
|
||
res_ &= bdd_apply(label, udest, bddop_imp);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
void
|
||
visit(const multop* node)
|
||
{
|
||
switch (node->op())
|
||
{
|
||
case multop::And:
|
||
{
|
||
formula_set implied;
|
||
implied_subformulae(node, implied);
|
||
|
||
// std::cerr << "---" << std::endl;
|
||
// for (formula_set::const_iterator i = implied.begin();
|
||
// i != implied.end(); ++i)
|
||
// std::cerr << to_string(*i) << std::endl;
|
||
|
||
res_ = bddtrue;
|
||
unsigned s = node->size();
|
||
for (unsigned n = 0; n < s; ++n)
|
||
{
|
||
const formula* sub = node->nth(n);
|
||
// Skip implied subformula. For instance
|
||
// when translating Fa & GFa, we should not
|
||
// attempt to translate Fa.
|
||
//
|
||
// This optimization combines nicely with the
|
||
// "recurring" optimization whereby GFp will be
|
||
// translated as r(GFp) = (r(p) | a(p))X(GFp)
|
||
// without showing Fp instead of r(GFp) =
|
||
// r(Fp)X(GFp). See the comment for the translation
|
||
// of G.
|
||
if (implied.find(sub) != implied.end())
|
||
continue;
|
||
// Propagate the recurring_ flag so that
|
||
// G(Fa & Fb) get optimized. See the comment in
|
||
// the case handling G.
|
||
bdd res = recurse(sub, recurring_);
|
||
//std::cerr << "== in And (" << to_string(sub)
|
||
// << ')' << std::endl;
|
||
// trace_ltl_bdd(dict_, res);
|
||
res_ &= res;
|
||
}
|
||
//std::cerr << "=== And final" << std::endl;
|
||
// trace_ltl_bdd(dict_, res_);
|
||
break;
|
||
}
|
||
case multop::Or:
|
||
{
|
||
res_ = bddfalse;
|
||
unsigned s = node->size();
|
||
for (unsigned n = 0; n < s; ++n)
|
||
res_ |= recurse(node->nth(n));
|
||
break;
|
||
}
|
||
case multop::Concat:
|
||
case multop::Fusion:
|
||
case multop::AndNLM:
|
||
case multop::AndRat:
|
||
case multop::OrRat:
|
||
SPOT_UNREACHABLE(); // Not an LTL operator
|
||
}
|
||
|
||
}
|
||
|
||
bdd
|
||
recurse(const formula* f, bool recurring = false)
|
||
{
|
||
const translate_dict::translated& t =
|
||
dict_.ltl_to_bdd(f, mark_all_, recurring);
|
||
rat_seen_ |= t.has_rational;
|
||
has_marked_ |= t.has_marked;
|
||
return t.symbolic;
|
||
}
|
||
|
||
|
||
private:
|
||
translate_dict& dict_;
|
||
bdd res_;
|
||
bool rat_seen_;
|
||
bool has_marked_;
|
||
bool mark_all_;
|
||
bool exprop_;
|
||
bool recurring_;
|
||
};
|
||
|
||
const translate_dict::translated&
|
||
translate_dict::ltl_to_bdd(const formula* f, bool mark_all, bool recurring)
|
||
{
|
||
flagged_formula ff;
|
||
ff.f = f;
|
||
ff.flags =
|
||
((mark_all || f->is_ltl_formula()) ? flags_mark_all : flags_none)
|
||
| (recurring ? flags_recurring : flags_none);
|
||
|
||
flagged_formula_to_bdd_map::const_iterator i = ltl_bdd_.find(ff);
|
||
|
||
if (i != ltl_bdd_.end())
|
||
return i->second;
|
||
|
||
translated t;
|
||
if (f->is_boolean())
|
||
{
|
||
t.symbolic = boolean_to_bdd(f);
|
||
t.has_rational = false;
|
||
t.has_marked = false;
|
||
}
|
||
else
|
||
{
|
||
ltl_trad_visitor v(*this, mark_all, exprop, recurring);
|
||
f->accept(v);
|
||
t.symbolic = v.result();
|
||
t.has_rational = v.has_rational();
|
||
t.has_marked = v.has_marked();
|
||
}
|
||
|
||
f->clone();
|
||
return ltl_bdd_.emplace(ff, t).first->second;
|
||
}
|
||
|
||
|
||
// Check whether a formula has a R, W, or G operator at its
|
||
// top-level (preceding logical operators do not count).
|
||
class ltl_possible_fair_loop_visitor: public visitor
|
||
{
|
||
public:
|
||
ltl_possible_fair_loop_visitor()
|
||
: res_(false)
|
||
{
|
||
}
|
||
|
||
virtual
|
||
~ltl_possible_fair_loop_visitor()
|
||
{
|
||
}
|
||
|
||
bool
|
||
result() const
|
||
{
|
||
return res_;
|
||
}
|
||
|
||
void
|
||
visit(const atomic_prop*)
|
||
{
|
||
}
|
||
|
||
void
|
||
visit(const constant*)
|
||
{
|
||
}
|
||
|
||
void
|
||
visit(const unop* node)
|
||
{
|
||
if (node->op() == unop::G)
|
||
res_ = true;
|
||
}
|
||
|
||
void
|
||
visit(const binop* node)
|
||
{
|
||
switch (node->op())
|
||
{
|
||
// r(f1 logical-op f2) = r(f1) logical-op r(f2)
|
||
case binop::Xor:
|
||
case binop::Implies:
|
||
case binop::Equiv:
|
||
node->first()->accept(*this);
|
||
if (!res_)
|
||
node->second()->accept(*this);
|
||
return;
|
||
case binop::U:
|
||
case binop::M:
|
||
return;
|
||
case binop::R:
|
||
case binop::W:
|
||
res_ = true;
|
||
return;
|
||
case binop::UConcat:
|
||
case binop::EConcat:
|
||
case binop::EConcatMarked:
|
||
node->second()->accept(*this);
|
||
// FIXME: we might need to add Acc[1]
|
||
return;
|
||
}
|
||
SPOT_UNREACHABLE();
|
||
}
|
||
|
||
void
|
||
visit(const bunop*)
|
||
{
|
||
SPOT_UNIMPLEMENTED();
|
||
}
|
||
|
||
void
|
||
visit(const multop* node)
|
||
{
|
||
unsigned s = node->size();
|
||
for (unsigned n = 0; n < s && !res_; ++n)
|
||
{
|
||
node->nth(n)->accept(*this);
|
||
}
|
||
}
|
||
|
||
private:
|
||
bool res_;
|
||
};
|
||
|
||
// Check whether a formula can be part of a fair loop.
|
||
// Cache the result for efficiency.
|
||
class possible_fair_loop_checker
|
||
{
|
||
public:
|
||
bool
|
||
check(const formula* f)
|
||
{
|
||
pfl_map::const_iterator i = pfl_.find(f);
|
||
if (i != pfl_.end())
|
||
return i->second;
|
||
ltl_possible_fair_loop_visitor v;
|
||
f->accept(v);
|
||
bool rel = v.result();
|
||
pfl_[f] = rel;
|
||
return rel;
|
||
}
|
||
|
||
private:
|
||
typedef std::unordered_map<const formula*, bool,
|
||
formula_ptr_hash> pfl_map;
|
||
pfl_map pfl_;
|
||
};
|
||
|
||
class formula_canonizer
|
||
{
|
||
public:
|
||
formula_canonizer(translate_dict& d,
|
||
bool fair_loop_approx, bdd all_promises)
|
||
: fair_loop_approx_(fair_loop_approx),
|
||
all_promises_(all_promises),
|
||
d_(d)
|
||
{
|
||
// For cosmetics, register 1 initially, so the algorithm will
|
||
// not register an equivalent formula first.
|
||
b2f_[bddtrue] = constant::true_instance();
|
||
}
|
||
|
||
~formula_canonizer()
|
||
{
|
||
formula_to_bdd_map::iterator i = f2b_.begin();
|
||
while (i != f2b_.end())
|
||
// Advance the iterator before destroying previous value.
|
||
i++->first->destroy();
|
||
}
|
||
|
||
// This wrap translate_dict::ltl_to_bdd() for top-level formulas.
|
||
// In case the formula contains SERE operators, we need to decide
|
||
// if we have to mark unmarked operators, and more
|
||
const translate_dict::translated&
|
||
translate(const formula* f, bool* new_flag = 0)
|
||
{
|
||
// Use the cached result if available.
|
||
formula_to_bdd_map::const_iterator i = f2b_.find(f);
|
||
if (i != f2b_.end())
|
||
return i->second;
|
||
|
||
if (new_flag)
|
||
*new_flag = true;
|
||
|
||
// Perform the actual translation.
|
||
translate_dict::translated t = d_.ltl_to_bdd(f, !f->is_marked());
|
||
|
||
// std::cerr << "-----" << std::endl;
|
||
// std::cerr << "Formula: " << to_string(f) << std::endl;
|
||
// std::cerr << "Rational: " << t.has_rational << std::endl;
|
||
// std::cerr << "Marked: " << t.has_marked << std::endl;
|
||
// std::cerr << "Mark all: " << !f->is_marked() << std::endl;
|
||
// std::cerr << "Transitions:" << std::endl;
|
||
// trace_ltl_bdd(d_, t.symbolic);
|
||
// std::cerr << "-----" << std::endl;
|
||
|
||
if (t.has_rational)
|
||
{
|
||
bdd res = bddfalse;
|
||
|
||
minato_isop isop(t.symbolic);
|
||
bdd cube;
|
||
while ((cube = isop.next()) != bddfalse)
|
||
{
|
||
bdd label = bdd_exist(cube, d_.next_set);
|
||
bdd dest_bdd = bdd_existcomp(cube, d_.next_set);
|
||
const formula* dest =
|
||
d_.conj_bdd_to_formula(dest_bdd);
|
||
|
||
// Handle a Miyano-Hayashi style unrolling for
|
||
// rational operators. Marked nodes correspond to
|
||
// subformulae in the Miyano-Hayashi set.
|
||
const formula* tmp = d_.mt.simplify_mark(dest);
|
||
dest->destroy();
|
||
dest = tmp;
|
||
|
||
if (dest->is_marked())
|
||
{
|
||
// Make the promise that we will exit marked sets.
|
||
int a =
|
||
d_.register_a_variable(constant::true_instance());
|
||
label &= bdd_ithvar(a);
|
||
}
|
||
else
|
||
{
|
||
// We have no marked operators, but still
|
||
// have other rational operator to check.
|
||
// Start a new marked cycle.
|
||
const formula* dest2 = d_.mt.mark_concat_ops(dest);
|
||
dest->destroy();
|
||
dest = dest2;
|
||
}
|
||
// Note that simplify_mark may have changed dest.
|
||
dest_bdd = bdd_ithvar(d_.register_next_variable(dest));
|
||
dest->destroy();
|
||
res |= label & dest_bdd;
|
||
}
|
||
t.symbolic = res;
|
||
// std::cerr << "Marking rewriting:" << std::endl;
|
||
// trace_ltl_bdd(v_.get_dict(), t.symbolic);
|
||
}
|
||
|
||
// Apply the fair-loop approximation if requested.
|
||
if (fair_loop_approx_)
|
||
{
|
||
// If the source cannot possibly be part of a fair
|
||
// loop, make all possible promises.
|
||
if (fair_loop_approx_
|
||
&& f != constant::true_instance()
|
||
&& !pflc_.check(f))
|
||
t.symbolic &= all_promises_;
|
||
}
|
||
|
||
// Register the reverse mapping if it is not already done.
|
||
if (b2f_.find(t.symbolic) == b2f_.end())
|
||
b2f_[t.symbolic] = f;
|
||
|
||
return f2b_.emplace(f->clone(), t).first->second;
|
||
}
|
||
|
||
const formula*
|
||
canonize(const formula* f)
|
||
{
|
||
bool new_variable = false;
|
||
bdd b = translate(f, &new_variable).symbolic;
|
||
|
||
bdd_to_formula_map::iterator i = b2f_.find(b);
|
||
// Since we have just translated the formula, it is
|
||
// necessarily in b2f_.
|
||
assert(i != b2f_.end());
|
||
|
||
if (i->second != f)
|
||
{
|
||
// The translated bdd maps to an already seen formula.
|
||
f->destroy();
|
||
f = i->second->clone();
|
||
}
|
||
return f;
|
||
}
|
||
|
||
bdd used_vars()
|
||
{
|
||
return d_.var_set;
|
||
}
|
||
|
||
private:
|
||
// Map a representation of successors to a canonical formula.
|
||
// We do this because many formulae (such as `aR(bRc)' and
|
||
// `aR(bRc).(bRc)') are equivalent, and are trivially identified
|
||
// by looking at the set of successors.
|
||
typedef std::unordered_map<bdd, const formula*,
|
||
bdd_hash> bdd_to_formula_map;
|
||
bdd_to_formula_map b2f_;
|
||
// Map each formula to its associated bdd. This speed things up when
|
||
// the same formula is translated several times, which especially
|
||
// occurs when canonize() is called repeatedly inside exprop.
|
||
typedef std::unordered_map<const formula*, translate_dict::translated,
|
||
ptr_hash<formula> > formula_to_bdd_map;
|
||
formula_to_bdd_map f2b_;
|
||
|
||
possible_fair_loop_checker pflc_;
|
||
bool fair_loop_approx_;
|
||
bdd all_promises_;
|
||
translate_dict& d_;
|
||
};
|
||
|
||
}
|
||
|
||
typedef std::map<bdd, bdd, bdd_less_than> prom_map;
|
||
typedef std::unordered_map<const formula*, prom_map,
|
||
formula_ptr_hash> dest_map;
|
||
|
||
static void
|
||
fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
|
||
{
|
||
bdd conds = bdd_existcomp(label, d.var_set);
|
||
bdd promises = bdd_existcomp(label, d.a_set);
|
||
|
||
dest_map::iterator i = dests.find(dest);
|
||
if (i == dests.end())
|
||
{
|
||
dests[dest][promises] = conds;
|
||
}
|
||
else
|
||
{
|
||
i->second[promises] |= conds;
|
||
dest->destroy();
|
||
}
|
||
}
|
||
|
||
|
||
tgba_digraph_ptr
|
||
ltl_to_tgba_fm(const formula* f, const bdd_dict_ptr& dict,
|
||
bool exprop, bool symb_merge, bool branching_postponement,
|
||
bool fair_loop_approx, const atomic_prop_set* unobs,
|
||
ltl_simplifier* simplifier)
|
||
{
|
||
const formula* f2;
|
||
ltl_simplifier* s = simplifier;
|
||
|
||
// Simplify the formula, if requested.
|
||
if (s)
|
||
{
|
||
// This will normalize the formula regardless of the
|
||
// configuration of the simplifier.
|
||
f2 = s->simplify(f);
|
||
}
|
||
else
|
||
{
|
||
// Otherwise, at least normalize the formula. We want all the
|
||
// negations on the atomic propositions. We also suppress
|
||
// logic abbreviations such as <=>, =>, or XOR, since they
|
||
// would involve negations at the BDD level.
|
||
s = new ltl_simplifier(dict);
|
||
f2 = s->negative_normal_form(f, false);
|
||
}
|
||
|
||
typedef std::set<const formula*, formula_ptr_less_than> set_type;
|
||
set_type formulae_to_translate;
|
||
|
||
assert(dict == s->get_dict());
|
||
|
||
translate_dict d(dict, s, exprop, f->is_syntactic_persistence());
|
||
|
||
// Compute the set of all promises that can possibly occur
|
||
// inside the formula.
|
||
bdd all_promises = bddtrue;
|
||
if (fair_loop_approx || unobs)
|
||
{
|
||
ltl_promise_visitor pv(d);
|
||
f2->accept(pv);
|
||
all_promises = pv.result();
|
||
}
|
||
|
||
formula_canonizer fc(d, fair_loop_approx, all_promises);
|
||
|
||
// These are used when atomic propositions are interpreted as
|
||
// events. There are two kinds of events: observable events are
|
||
// those used in the formula, and unobservable events or other
|
||
// events that can occur at anytime. All events exclude each
|
||
// other.
|
||
bdd observable_events = bddfalse;
|
||
bdd unobservable_events = bddfalse;
|
||
if (unobs)
|
||
{
|
||
bdd neg_events = bddtrue;
|
||
std::auto_ptr<atomic_prop_set> aps(atomic_prop_collect(f));
|
||
for (atomic_prop_set::const_iterator i = aps->begin();
|
||
i != aps->end(); ++i)
|
||
{
|
||
int p = d.register_proposition(*i);
|
||
bdd pos = bdd_ithvar(p);
|
||
bdd neg = bdd_nithvar(p);
|
||
observable_events = (observable_events & neg) | (neg_events & pos);
|
||
neg_events &= neg;
|
||
}
|
||
for (atomic_prop_set::const_iterator i = unobs->begin();
|
||
i != unobs->end(); ++i)
|
||
{
|
||
int p = d.register_proposition(*i);
|
||
bdd pos = bdd_ithvar(p);
|
||
bdd neg = bdd_nithvar(p);
|
||
unobservable_events = ((unobservable_events & neg)
|
||
| (neg_events & pos));
|
||
observable_events &= neg;
|
||
neg_events &= neg;
|
||
}
|
||
}
|
||
bdd all_events = observable_events | unobservable_events;
|
||
|
||
|
||
tgba_digraph_ptr a = make_tgba_digraph(dict);
|
||
auto namer = a->create_namer<const formula*, formula_ptr_hash>();
|
||
|
||
// This is in case the initial state is equivalent to true...
|
||
if (symb_merge)
|
||
f2 = fc.canonize(f2);
|
||
|
||
formulae_to_translate.insert(f2);
|
||
a->set_init_state(namer->new_state(f2));
|
||
|
||
while (!formulae_to_translate.empty())
|
||
{
|
||
// Pick one formula.
|
||
const formula* now = *formulae_to_translate.begin();
|
||
formulae_to_translate.erase(formulae_to_translate.begin());
|
||
|
||
// Translate it into a BDD to simplify it.
|
||
const translate_dict::translated& t = fc.translate(now);
|
||
bdd res = t.symbolic;
|
||
|
||
// Handle exclusive events.
|
||
if (unobs)
|
||
{
|
||
res &= observable_events;
|
||
int n = d.register_next_variable(now);
|
||
res |= unobservable_events & bdd_ithvar(n) & all_promises;
|
||
}
|
||
|
||
// We used to factor only Next and A variables while computing
|
||
// prime implicants, with
|
||
// minato_isop isop(res, d.next_set & d.a_set);
|
||
// in order to obtain transitions with formulae of atomic
|
||
// proposition directly, but unfortunately this led to strange
|
||
// factorizations. For instance f U g was translated as
|
||
// r(f U g) = g + a(g).r(X(f U g)).(f + g)
|
||
// instead of just
|
||
// r(f U g) = g + a(g).r(X(f U g)).f
|
||
// Of course both formulae are logically equivalent, but the
|
||
// latter is "more deterministic" than the former, so it should
|
||
// be preferred.
|
||
//
|
||
// Therefore we now factor all variables. This may lead to more
|
||
// transitions than necessary (e.g., r(f + g) = f + g will be
|
||
// coded as two transitions), but we later merge all transitions
|
||
// with same source/destination and acceptance conditions. This
|
||
// is the goal of the `dests' hash.
|
||
//
|
||
// Note that this is still not optimal. For instance it is
|
||
// better to encode `f U g' as
|
||
// r(f U g) = g + a(g).r(X(f U g)).f.!g
|
||
// because that leads to a deterministic automaton. In order
|
||
// to handle this, we take the conditions of any transition
|
||
// going to true (it's `g' here), and remove it from the other
|
||
// transitions.
|
||
//
|
||
// In `exprop' mode, considering all possible combinations of
|
||
// outgoing propositions generalizes the above trick.
|
||
dest_map dests;
|
||
|
||
// Compute all outgoing arcs.
|
||
|
||
// If EXPROP is set, we will refine the symbolic
|
||
// representation of the successors for all combinations of
|
||
// the atomic properties involved in the formula.
|
||
// VAR_SET is the set of these properties.
|
||
bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
|
||
// ALL_PROPS is the combinations we have yet to consider.
|
||
// We used to start with `all_props = bddtrue', but it is
|
||
// more efficient to start with the set of all satisfiable
|
||
// variables combinations.
|
||
bdd all_props = bdd_existcomp(res, d.var_set);
|
||
while (all_props != bddfalse)
|
||
{
|
||
bdd one_prop_set = bddtrue;
|
||
if (exprop)
|
||
one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
|
||
all_props -= one_prop_set;
|
||
|
||
typedef std::map<bdd, const formula*, bdd_less_than> succ_map;
|
||
succ_map succs;
|
||
|
||
// Compute prime implicants.
|
||
// The reason we use prime implicants and not bdd_satone()
|
||
// is that we do not want to get any negation in front of Next
|
||
// or Acc variables. We wouldn't know what to do with these.
|
||
// We never added negations in front of these variables when
|
||
// we built the BDD, so prime implicants will not "invent" them.
|
||
//
|
||
// FIXME: minato_isop is quite expensive, and I (=adl)
|
||
// don't think we really care that much about getting the
|
||
// smalled sum of products that minato_isop strives to
|
||
// compute. Given that Next and Acc variables should
|
||
// always be positive, maybe there is a faster way to
|
||
// compute the successors? E.g. using bdd_satone() and
|
||
// ignoring negated Next and Acc variables.
|
||
minato_isop isop(res & one_prop_set);
|
||
bdd cube;
|
||
while ((cube = isop.next()) != bddfalse)
|
||
{
|
||
bdd label = bdd_exist(cube, d.next_set);
|
||
bdd dest_bdd = bdd_existcomp(cube, d.next_set);
|
||
const formula* dest = d.conj_bdd_to_formula(dest_bdd);
|
||
|
||
// Simplify the formula, if requested.
|
||
if (simplifier)
|
||
{
|
||
const formula* tmp = simplifier->simplify(dest);
|
||
dest->destroy();
|
||
dest = tmp;
|
||
// Ignore the arc if the destination reduces to false.
|
||
if (dest == constant::false_instance())
|
||
continue;
|
||
}
|
||
|
||
// If we already know a state with the same
|
||
// successors, use it in lieu of the current one.
|
||
if (symb_merge)
|
||
dest = fc.canonize(dest);
|
||
|
||
// If we are not postponing the branching, we can
|
||
// declare the outgoing transitions immediately.
|
||
// Otherwise, we merge transitions with identical
|
||
// label, and declare the outgoing transitions in a
|
||
// second loop.
|
||
if (!branching_postponement)
|
||
{
|
||
fill_dests(d, dests, label, dest);
|
||
}
|
||
else
|
||
{
|
||
succ_map::iterator si = succs.find(label);
|
||
if (si == succs.end())
|
||
succs[label] = dest;
|
||
else
|
||
si->second =
|
||
multop::instance(multop::Or, si->second, dest);
|
||
}
|
||
}
|
||
if (branching_postponement)
|
||
for (succ_map::const_iterator si = succs.begin();
|
||
si != succs.end(); ++si)
|
||
fill_dests(d, dests, si->first, si->second);
|
||
}
|
||
|
||
// Check for an arc going to 1 (True). Register it first, that
|
||
// way it will be explored before others during model checking.
|
||
auto truef = constant::true_instance();
|
||
dest_map::const_iterator i = dests.find(truef);
|
||
// COND_FOR_TRUE is the conditions of the True arc, so we
|
||
// can remove them from all other arcs. It might sounds that
|
||
// this is not needed when exprop is used, but in fact it is
|
||
// complementary.
|
||
//
|
||
// Consider
|
||
// f = r(X(1) R p) = p.(1 + r(X(1) R p))
|
||
// with exprop the two outgoing arcs would be
|
||
// p p
|
||
// f ----> 1 f ----> f
|
||
//
|
||
// where in fact we could output
|
||
// p
|
||
// f ----> 1
|
||
//
|
||
// because there is no point in looping on f if we can go to 1.
|
||
bdd cond_for_true = bddfalse;
|
||
if (i != dests.end())
|
||
{
|
||
// When translating LTL for an event-based logic with
|
||
// unobservable events, the 1 state should accept all events,
|
||
// even unobservable events.
|
||
if (unobs && now == truef)
|
||
cond_for_true = all_events;
|
||
else
|
||
{
|
||
// There should be only one transition going to 1 (true) ...
|
||
assert(i->second.size() == 1);
|
||
prom_map::const_iterator j = i->second.begin();
|
||
// ... and it is not expected to make any promises (unless
|
||
// fair loop approximations are used).
|
||
assert(fair_loop_approx || j->first == bddtrue);
|
||
cond_for_true = j->second;
|
||
}
|
||
if (!namer->has_state(truef))
|
||
{
|
||
formulae_to_translate.insert(truef);
|
||
namer->new_state(truef);
|
||
}
|
||
namer->new_transition(now, truef, cond_for_true, bddtrue);
|
||
}
|
||
// Register other transitions.
|
||
for (i = dests.begin(); i != dests.end(); ++i)
|
||
{
|
||
const formula* dest = i->first;
|
||
if (dest == truef)
|
||
continue;
|
||
|
||
// The cond_for_true optimization can cause some
|
||
// transitions to be removed. So we have to remember
|
||
// whether a formula is actually reachable.
|
||
bool reachable = false;
|
||
// Will this be a new state?
|
||
bool seen = namer->has_state(dest);
|
||
|
||
for (auto& j: i->second)
|
||
{
|
||
bdd cond = j.second - cond_for_true;
|
||
if (cond == bddfalse) // Skip false transitions.
|
||
continue;
|
||
if (!reachable && !seen)
|
||
namer->new_state(dest);
|
||
reachable = true;
|
||
namer->new_transition(now, dest, cond, j.first);
|
||
}
|
||
|
||
if (reachable && !seen)
|
||
formulae_to_translate.insert(dest);
|
||
else
|
||
dest->destroy();
|
||
}
|
||
}
|
||
|
||
for (auto n: namer->names())
|
||
n->destroy();
|
||
delete namer;
|
||
|
||
dict->register_propositions(fc.used_vars(), a);
|
||
a->set_acceptance_conditions(d.a_set);
|
||
// Turn all promises into real acceptance conditions.
|
||
acc_compl ac(a->all_acceptance_conditions(),
|
||
a->neg_acceptance_conditions());
|
||
|
||
unsigned ns = a->num_states();
|
||
for (unsigned s = 0; s < ns; ++s)
|
||
for (auto& t: a->out(s))
|
||
t.acc = ac.reverse_complement(t.acc);
|
||
|
||
|
||
if (!simplifier)
|
||
// This should not be deleted before we have registered all propositions.
|
||
delete s;
|
||
|
||
return a;
|
||
}
|
||
|
||
}
|