This fixes #61, and addresses one item of #14. * src/ltlvisit/relabel.hh: Use a map rather than a unordered_map, because the Swig binding for unordered_map do not seem functional. * wrap/python/spot_impl.i: Adjust. * wrap/python/tests/relabel.py: New file. * wrap/python/tests/Makefile.am: Add it. * doc/org/tut02.org: New file. * doc/Makefile.am: Add it.
4.3 KiB
Relabeling Formulas
The task is to read an LTL formula, relabel all (possibly complex)
atomic propositions, and provide #define statements for each of
these renamings, writing everything in Spin's syntax.
Shell
ltlfilt -ps --relabel=pnn --define -f '"Proc@Here" U ("var > 10" | "var < 4")'
#define p0 ((Proc@Here)) #define p1 ((var < 4)) #define p2 ((var > 10)) (p0) U ((p1) || (p2))
When is this output interesting, you may ask? It is useful for
instance if you want to call ltl2ba (or any other LTL-to-Büchi
translator) using a formula with complex atomic propositions it cannot
parse. Then you can pass the rewritten formula to ltl2ba, and
prepend all those #define to its output. For instance:
ltlfilt -ps --relabel=pnn --define=tmp.defs -f '"Proc@Here" U ("var > 10" | "var < 4")' >tmp.ltl
cat tmp.defs; ltl2ba -F tmp.ltl
rm tmp.defs tmp.ltl
#define p0 ((Proc@Here))
#define p1 ((var < 4))
#define p2 ((var > 10))
never { /* (p0) U ((p1) || (p2))
*/
T0_init:
if
:: (p0) -> goto T0_init
:: (p1) || (p2) -> goto accept_all
fi;
accept_all:
skip
}
Python
The spot.relabel function takes an optional third parameter that
should be a relabeling_map. If supplied, this map is filled with
pairs of atomic propositions of the form (new-name, old-name).
import spot
f = spot.formula('"Proc@Here" U ("var > 10" | "var < 4")')
m = spot.relabeling_map()
g = spot.relabel(f, spot.Pnn, m)
for newname, oldname in m.items():
print("#define {} ({})".format(newname.to_str(), oldname.to_str('spin', True)))
print(g.to_str('spin', True))
#define p0 ((Proc@Here)) #define p1 ((var < 4)) #define p2 ((var > 10)) (p0) U ((p1) || (p2))
C++
The spot::ltl::relabeling_map is just a std::map with a custom
destructor.
#include <string>
#include <iostream>
#include "ltlparse/public.hh"
#include "ltlvisit/print.hh"
#include "ltlvisit/relabel.hh"
int main()
{
std::string input = "\"Proc@Here\" U (\"var > 10\" | \"var < 4\")";
spot::ltl::parse_error_list pel;
const spot::ltl::formula* f = spot::ltl::parse_infix_psl(input, pel);
if (spot::ltl::format_parse_errors(std::cerr, input, pel))
{
if (f)
f->destroy();
return 1;
}
spot::ltl::relabeling_map m;
const spot::ltl::formula* g = spot::ltl::relabel(f, spot::ltl::Pnn, &m);
for (auto& i: m)
{
std::cout << "#define ";
print_psl(std::cout, i.first) << " (";
print_spin_ltl(std::cout, i.second, true) << ")\n";
}
print_spin_ltl(std::cout, g, true) << '\n';
g->destroy();
f->destroy();
return 0;
}
#define p0 ((Proc@Here)) #define p1 ((var < 4)) #define p2 ((var > 10)) (p0) U ((p1) || (p2))
Additional comments
Two ways to name atomic propositions
Instead of --relabel=pnn (or spot.Pnn, or spot::ltl::Pnn), you can
actually use --relabel=abc (or spot.Abc, or spot::ltl::Abc) to have
the atomic propositions named a, b, c, etc.
Relabeling Boolean sub-expressions
Instead of relabeling each atomic proposition, you could decide to relabel each Boolean sub-expression:
ltlfilt -ps --relabel-bool=pnn --define -f '"Proc@Here" U ("var > 10" | "var < 4")'
#define p0 ((Proc@Here)) #define p1 ((var < 4) || (var > 10)) (p0) U (p1)
The relabeling routine is smart enough to not give different names to Boolean expressions that have some sub-expression in common.
For instance a U (a & b) will not be relabeled into (p0) U (p1)
because that would hide the fact that both p0 and p1 check for
a. Instead we get this:
ltlfilt -ps --relabel-bool=pnn --define -f 'a U (a & b)'
#define p0 ((a)) #define p1 ((b)) (p0) U ((p0) && (p1))
This "Boolean sub-expression" relabeling is available in Python and
C++ via the relabel_bse function. The interface is identical to
relabel.