136 lines
3.8 KiB
Org Mode
136 lines
3.8 KiB
Org Mode
# -*- coding: utf-8 -*-
|
|
#+TITLE: Creating an automaton by adding states and transitions
|
|
#+DESCRIPTION: Code example for constructing ω-automata in Spot
|
|
#+SETUPFILE: setup.org
|
|
#+HTML_LINK_UP: tut.html
|
|
|
|
This example demonstrates how to create an automaton and then print it.
|
|
|
|
* C++
|
|
:PROPERTIES:
|
|
:CUSTOM_ID: cpp
|
|
:END:
|
|
|
|
#+BEGIN_SRC C++ :results verbatim :exports both :wrap SRC hoa
|
|
#include <iostream>
|
|
#include <spot/twaalgos/hoa.hh>
|
|
#include <spot/twa/twagraph.hh>
|
|
|
|
int main(void)
|
|
{
|
|
// The bdd_dict is used to maintain the correspondence between the
|
|
// atomic propositions and the BDD variables that label the edges of
|
|
// the automaton.
|
|
spot::bdd_dict_ptr dict = spot::make_bdd_dict();
|
|
// This creates an empty automaton that we have yet to fill.
|
|
spot::twa_graph_ptr aut = make_twa_graph(dict);
|
|
|
|
// Since a BDD is associated to every atomic proposition, the
|
|
// register_ap() function returns a BDD variable number
|
|
// that can be converted into a BDD using bdd_ithvar().
|
|
bdd p1 = bdd_ithvar(aut->register_ap("p1"));
|
|
bdd p2 = bdd_ithvar(aut->register_ap("p2"));
|
|
|
|
// Set the acceptance condition of the automaton to Inf(0)&Inf(1)
|
|
aut->set_generalized_buchi(2);
|
|
|
|
// States are numbered from 0.
|
|
aut->new_states(3);
|
|
// The default initial state is 0, but it is always better to
|
|
// specify it explicitely.
|
|
aut->set_init_state(0U);
|
|
|
|
// new_edge() takes 3 mandatory parameters: source state,
|
|
// destination state, and label. A last optional parameter can be
|
|
// used to specify membership to acceptance sets.
|
|
aut->new_edge(0, 1, p1);
|
|
aut->new_edge(1, 1, p1 & p2, {0});
|
|
aut->new_edge(1, 2, p2, {1});
|
|
aut->new_edge(2, 1, p1 | p2, {0, 1});
|
|
|
|
// Print the resulting automaton.
|
|
print_hoa(std::cout, aut);
|
|
return 0;
|
|
}
|
|
#+END_SRC
|
|
|
|
#+RESULTS:
|
|
#+BEGIN_SRC hoa
|
|
HOA: v1
|
|
States: 3
|
|
Start: 0
|
|
AP: 2 "p1" "p2"
|
|
acc-name: generalized-Buchi 2
|
|
Acceptance: 2 Inf(0)&Inf(1)
|
|
properties: trans-labels explicit-labels trans-acc
|
|
--BODY--
|
|
State: 0
|
|
[0] 1
|
|
State: 1
|
|
[0&1] 1 {0}
|
|
[1] 2 {1}
|
|
State: 2
|
|
[0 | 1] 1 {0 1}
|
|
--END--
|
|
#+END_SRC
|
|
|
|
* Python
|
|
|
|
#+BEGIN_SRC python :results output :exports both :wrap SRC hoa
|
|
import spot
|
|
import buddy
|
|
|
|
# The bdd_dict is used to maintain the correspondence between the
|
|
# atomic propositions and the BDD variables that label the edges of
|
|
# the automaton.
|
|
bdict = spot.make_bdd_dict();
|
|
# This creates an empty automaton that we have yet to fill.
|
|
aut = spot.make_twa_graph(bdict)
|
|
|
|
# Since a BDD is associated to every atomic proposition, the register_ap()
|
|
# function returns a BDD variable number that can be converted into a BDD using
|
|
# bdd_ithvar() from the BuDDy library.
|
|
p1 = buddy.bdd_ithvar(aut.register_ap("p1"))
|
|
p2 = buddy.bdd_ithvar(aut.register_ap("p2"))
|
|
|
|
# Set the acceptance condition of the automaton to Inf(0)&Inf(1)
|
|
aut.set_generalized_buchi(2)
|
|
|
|
# States are numbered from 0.
|
|
aut.new_states(3)
|
|
# The default initial state is 0, but it is always better to
|
|
# specify it explicitely.
|
|
aut.set_init_state(0)
|
|
|
|
# new_edge() takes 3 mandatory parameters: source state, destination state, and
|
|
# label. A last optional parameter can be used to specify membership to
|
|
# acceptance sets. In the Python version, the list of acceptance sets the
|
|
# transition belongs to should be specified as a list.
|
|
aut.new_edge(0, 1, p1)
|
|
aut.new_edge(1, 1, p1 & p2, [0])
|
|
aut.new_edge(1, 2, p2, [1]);
|
|
aut.new_edge(2, 1, p1 | p2, [0, 1]);
|
|
|
|
# Print the resulting automaton.
|
|
print(aut.to_str('hoa'))
|
|
#+END_SRC
|
|
|
|
#+RESULTS:
|
|
#+BEGIN_SRC hoa
|
|
HOA: v1
|
|
States: 3
|
|
Start: 0
|
|
AP: 2 "p1" "p2"
|
|
acc-name: generalized-Buchi 2
|
|
Acceptance: 2 Inf(0)&Inf(1)
|
|
properties: trans-labels explicit-labels trans-acc
|
|
--BODY--
|
|
State: 0
|
|
[0] 1
|
|
State: 1
|
|
[0&1] 1 {0}
|
|
[1] 2 {1}
|
|
State: 2
|
|
[0 | 1] 1 {0 1}
|
|
--END--
|
|
#+END_SRC
|