224 lines
5.4 KiB
Org Mode
224 lines
5.4 KiB
Org Mode
# -*- coding: utf-8 -*-
|
|
#+TITLE: Translating an LTL formula into a never claim
|
|
#+DESCRIPTION: Code example for translating formulas in Spot
|
|
#+INCLUDE: setup.org
|
|
#+HTML_LINK_UP: tut.html
|
|
#+PROPERTY: header-args:sh :results verbatim :exports both
|
|
#+PROPERTY: header-args:python :results output :exports both
|
|
#+PROPERTY: header-args:C+++ :results verbatim :exports both
|
|
|
|
Here is how to translate an LTL (or PSL) formula into a never claim.
|
|
|
|
* Shell
|
|
|
|
#+BEGIN_SRC sh
|
|
ltl2tgba --spin 'GFa -> GFb'
|
|
#+END_SRC
|
|
|
|
#+RESULTS:
|
|
#+begin_example
|
|
never { /* F(GFb | G!a) */
|
|
T0_init:
|
|
if
|
|
:: (true) -> goto T0_init
|
|
:: (b) -> goto accept_S1
|
|
:: (!(a)) -> goto accept_S2
|
|
fi;
|
|
accept_S1:
|
|
if
|
|
:: (b) -> goto accept_S1
|
|
:: (!(b)) -> goto T0_S3
|
|
fi;
|
|
accept_S2:
|
|
if
|
|
:: (!(a)) -> goto accept_S2
|
|
fi;
|
|
T0_S3:
|
|
if
|
|
:: (b) -> goto accept_S1
|
|
:: (!(b)) -> goto T0_S3
|
|
fi;
|
|
}
|
|
#+end_example
|
|
|
|
* Python
|
|
|
|
The =formula= function returns a formula object (or raises a
|
|
parse-error exception). Formula objects have a =translate()= method
|
|
that returns an automaton, and the automata objects have a =to_str=
|
|
method that can output in one of the supported syntaxes.
|
|
|
|
So the translation is actually a one-liner in Python:
|
|
|
|
#+BEGIN_SRC python
|
|
import spot
|
|
print(spot.formula('GFa -> GFb').translate('BA').to_str('spin'))
|
|
#+END_SRC
|
|
|
|
#+RESULTS:
|
|
#+begin_example
|
|
never {
|
|
T0_init:
|
|
if
|
|
:: (true) -> goto T0_init
|
|
:: (b) -> goto accept_S1
|
|
:: (!(a)) -> goto accept_S2
|
|
fi;
|
|
accept_S1:
|
|
if
|
|
:: (b) -> goto accept_S1
|
|
:: (!(b)) -> goto T0_S3
|
|
fi;
|
|
accept_S2:
|
|
if
|
|
:: (!(a)) -> goto accept_S2
|
|
fi;
|
|
T0_S3:
|
|
if
|
|
:: (b) -> goto accept_S1
|
|
:: (!(b)) -> goto T0_S3
|
|
fi;
|
|
}
|
|
|
|
#+end_example
|
|
|
|
The above line can actually be made a bit shorter, because
|
|
=translate()= can also be used as a function (as opposed to a method)
|
|
that takes a formula (possibly as a string) as first argument:
|
|
|
|
#+BEGIN_SRC python
|
|
import spot
|
|
print(spot.translate('GFa -> GFb', 'buchi', 'sbacc').to_str('spin'))
|
|
#+END_SRC
|
|
|
|
#+RESULTS:
|
|
#+begin_example
|
|
never {
|
|
T0_init:
|
|
if
|
|
:: (true) -> goto T0_init
|
|
:: (b) -> goto accept_S1
|
|
:: (!(a)) -> goto accept_S2
|
|
fi;
|
|
accept_S1:
|
|
if
|
|
:: (b) -> goto accept_S1
|
|
:: (!(b)) -> goto T0_S3
|
|
fi;
|
|
accept_S2:
|
|
if
|
|
:: (!(a)) -> goto accept_S2
|
|
fi;
|
|
T0_S3:
|
|
if
|
|
:: (b) -> goto accept_S1
|
|
:: (!(b)) -> goto T0_S3
|
|
fi;
|
|
}
|
|
|
|
#+end_example
|
|
|
|
* C++
|
|
|
|
All the translation pipeline (this includes simplifying the formula,
|
|
translating the simplified formula into an automaton, and simplifying
|
|
the resulting automaton) is handled by the =spot::translator= class.
|
|
An instance of this class can configured by calling =set_type()= to
|
|
chose the type of automaton to output, =set_level()= to set the level
|
|
of optimization (it's high by default), and =set_pref()= to set
|
|
various preferences (like small or deterministic) or characteristic
|
|
(complete, unambiguous, state-based acceptance) for the resulting
|
|
automaton. Finally, the output as a never claim is done via the
|
|
=print_never_claim= function.
|
|
|
|
#+BEGIN_SRC C++
|
|
#include <iostream>
|
|
#include <spot/tl/parse.hh>
|
|
#include <spot/twaalgos/translate.hh>
|
|
#include <spot/twaalgos/neverclaim.hh>
|
|
|
|
int main()
|
|
{
|
|
spot::parsed_formula pf = spot::parse_infix_psl("GFa -> GFb");
|
|
if (pf.format_errors(std::cerr))
|
|
return 1;
|
|
spot::translator trans;
|
|
trans.set_type(spot::postprocessor::Buchi);
|
|
trans.set_pref(spot::postprocessor::SBAcc
|
|
| spot::postprocessor::Small);
|
|
spot::twa_graph_ptr aut = trans.run(pf.f);
|
|
print_never_claim(std::cout, aut) << '\n';
|
|
return 0;
|
|
}
|
|
#+END_SRC
|
|
|
|
#+RESULTS:
|
|
#+begin_example
|
|
never {
|
|
T0_init:
|
|
if
|
|
:: (true) -> goto T0_init
|
|
:: (b) -> goto accept_S1
|
|
:: (!(a)) -> goto accept_S2
|
|
fi;
|
|
accept_S1:
|
|
if
|
|
:: (b) -> goto accept_S1
|
|
:: (!(b)) -> goto T0_S3
|
|
fi;
|
|
accept_S2:
|
|
if
|
|
:: (!(a)) -> goto accept_S2
|
|
fi;
|
|
T0_S3:
|
|
if
|
|
:: (b) -> goto accept_S1
|
|
:: (!(b)) -> goto T0_S3
|
|
fi;
|
|
}
|
|
|
|
#+end_example
|
|
|
|
* Additional comments
|
|
|
|
The Python version of =translate()= is documented as follows:
|
|
|
|
#+BEGIN_SRC python :exports results
|
|
import spot
|
|
help(spot.translate)
|
|
#+END_SRC
|
|
|
|
#+RESULTS:
|
|
#+begin_example
|
|
Help on function translate in module spot:
|
|
|
|
translate(formula, *args, dict=<spot.impl.bdd_dict; proxy of <Swig Object of type 'std::shared_ptr< spot::bdd_dict > *' at 0x7f42f4cea030> >, xargs=None)
|
|
Translate a formula into an automaton.
|
|
|
|
Keep in mind that 'Deterministic' expresses just a preference that
|
|
may not be satisfied.
|
|
|
|
The optional arguments should be strings among the following:
|
|
- at most one in 'GeneralizedBuchi', 'Buchi', or 'Monitor',
|
|
'generic', 'parity', 'parity min odd', 'parity min even',
|
|
'parity max odd', 'parity max even', 'coBuchi'
|
|
(type of acceptance condition to build)
|
|
- at most one in 'Small', 'Deterministic', 'Any'
|
|
(preferred characteristics of the produced automaton)
|
|
- at most one in 'Low', 'Medium', 'High'
|
|
(optimization level)
|
|
- any combination of 'Complete', 'Unambiguous',
|
|
'StateBasedAcceptance' (or 'SBAcc' for short), and
|
|
'Colored' (only for parity acceptance)
|
|
|
|
The default corresponds to 'tgba', 'small' and 'high'.
|
|
|
|
Additional options can be supplied using a `spot.option_map`, or a
|
|
string (that will be converted to `spot.option_map`), as the `xargs`
|
|
argument. This is similar to the `-x` option of command-line tools;
|
|
so check out the spot-x(7) man page for details.
|
|
|
|
#+end_example
|
|
|
|
# LocalWords: utf html args SRC tgba GFa GFb init fi str aut xargs
|
|
# LocalWords: coBuchi StateBasedAcceptance SBAcc
|